ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2024-03-20
    Description: The frictional power per unit area (product of frictional traction τ and slip rate in MW m−2) dissipated during earthquakes triggers fault dynamic weakening mechanisms that control rupture nucleation, propagation and arrest. Although of great relevance in earthquake mechanics, cannot, with rare exceptions, be determined by geophysical methods. Here we exploit theoretical, experimental and geological constraints to estimate dissipated on a fault patch exhumed from 7-9 km depth. According to theoretical models, in polymineralic, silicate rocks the amplitude (〈 1 mm) of the grain-scale roughness of the boundary between frictional melt (pseudotachylyte) and host rock decreases with increasing . The dependence of grain-scale roughness with is due to differential melt front migration in the host rock minerals. This dependence is confirmed by friction experiments reproducing seismic slip where pseudotachylytes were produced by shearing tonalite at ranging from 5 to 25 MW m−2. In natural pseudotachylytes across tonalites, the grain-scale roughness broadly decreases from extensional to compressional fault domains where lower and higher are expected, respectively. Analysis of the natural dataset calibrated by experiments yields values in the range of 4-60 MW m−2 (16 MW m−2 average value). These values, estimated in small fault patches, are at the lower end of broad estimates of (3-300 MW m−2) obtained from frictional tractions (30-300 MPa) and fault slip rates (0.1-1 m/s) assumed as typical of upper crustal earthquakes.
    Description: Published
    Description: 118057
    Description: OST3 Vicino alla faglia
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...