ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (12)
  • Public Library of Science (PLoS)
  • 2015-2019  (12)
  • 2000-2004
  • 1965-1969
  • 2015  (12)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 5885–5907, doi:10.1175/JCLI-D-14-00635.1.
    Description: The structure, variability, and regional connectivity of the Tokar Gap jet (TGJ) are described using WRF Model analyses and supporting atmospheric datasets from the East African–Red Sea–Arabian Peninsula (EARSAP) region during summer 2008. Sources of the TGJ’s unique quasi-diurnal nature and association with atypically high atmospheric moisture transport are traced back to larger-scale atmospheric dynamics influencing its forcing. These include seasonal shifts in the intertropical convergence zone (ITCZ), variability of the monsoon and North African wind regimes, and ties to other orographic flow patterns. Strong modulation of the TGJ by regional processes such as the desert heating cycle, wind convergence at the ITCZ surface front, and the local land–sea breeze cycle are described. Two case studies present the interplay of these influences in detail. The first of these was an “extreme” gap wind event on 12 July, in which horizontal velocities in the Tokar Gap exceeded 26 m s−1 and the flow from the jet extended the full width of the Red Sea basin. This event coincided with development of a large mesoscale convective complex (MCC) and precipitation at the entrance of the Tokar Gap as well as smaller gaps downstream along the Arabian Peninsula. More typical behavior of the TGJ during the 2008 summer is discussed using a second case study on 19 July. Downwind impact of the TGJ is evaluated using Lagrangian model trajectories and analysis of the lateral moisture fluxes (LMFs) during jet events. These results suggest means by which TGJ contributes to large LMFs and has potential bearing upon Sahelian rainfall and MCC development.
    Description: This work was supported by a grant from the King Abdullah University of Science and Technology (KAUST) as well as National Science Foundation Grant OCE0927017 and from DOD (MURI) Grant N000141110087, administered by the Office of Naval Research.
    Description: 2016-02-01
    Keywords: Africa ; Orographic effects ; Monsoons ; Atmosphere-land interaction ; Atmosphere-ocean interaction ; Hydrometeorology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-12-11
    Description: The mechanisms responsible for tropical cyclone (TC) intensification in the presence of moderate vertical shear magnitudes are not well understood. To investigate how TCs intensify in spite of moderate shear, this study employed a 96-member ensemble generated with the Advanced Hurricane Weather Research and Forecasting (AHW) Model. In this first part, AHW ensemble forecasts for TC Katia (2011) were evaluated when Katia was a weak tropical storm in an environment of 12 m s−1 easterly shear. The 5-day AHW forecasts for Katia were characterized by large variability in the intensity, presenting an opportunity to compare the underlying mechanisms between two subsets of members that predicted different intensity scenarios: intensification and weakening. The key difference between these two subsets was found in the lower-tropospheric moisture north of Katia (i.e., right-of-shear quadrant). With more water vapor in the lower troposphere, buoyant updrafts helped to moisten the midtroposphere and enhanced the likelihood of deep and organized convection in the subset that predicted intensification. This finding was validated with a vorticity budget, which showed that deep cyclonic vortex stretching and tilting contributed to spinning up the circulation after the midtroposphere had moistened. Sensitivity experiments, in which the initial conditions were perturbed, also demonstrated the importance of lower-tropospheric moisture, which suggests that moisture observations may help reduce uncertainty in forecasts of weak, sheared tropical storms.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-12-01
    Description: The Mesoscale Predictability Experiment (MPEX) was conducted from 15 May to 15 June 2013 in the central United States. MPEX was motivated by the basic question of whether experimental, subsynoptic observations can extend convective-scale predictability and otherwise enhance skill in short-term regional numerical weather prediction. Observational tools for MPEX included the National Science Foundation (NSF)–National Center for Atmospheric Research (NCAR) Gulfstream V aircraft (GV), which featured the Airborne Vertical Atmospheric Profiling System mini-dropsonde system and a microwave temperature-profiling (MTP) system as well as several ground-based mobile upsonde systems. Basic operations involved two missions per day: an early morning mission with the GV, well upstream of anticipated convective storms, and an afternoon and early evening mission with the mobile sounding units to sample the initiation and upscale feedbacks of the convection. A total of 18 intensive observing periods (IOPs) were completed during the field phase, representing a wide spectrum of synoptic regimes and convective events, including several major severe weather and/or tornado outbreak days. The novel observational strategy employed during MPEX is documented herein, as is the unique role of the ensemble modeling efforts—which included an ensemble sensitivity analysis—to both guide the observational strategies and help address the potential impacts of such enhanced observations on short-term convective forecasting. Preliminary results of retrospective data assimilation experiments are discussed, as are data analyses showing upscale convective feedbacks.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-09-01
    Description: With extreme winds, rapidly changing weather, and myriad weather conditions during any given month, Mount Washington, New Hampshire (1,917 m MSL), is an ideal location to observe and learn about atmospheric sciences. During the summer of 2013, Mount Washington Observatory (MWO) welcomed a select group of interns to experience life at the “Home of the World’s Worst Weather” and develop scientific and meteorological skills. The goals of the internship program are to learn how to observe and forecast mountain weather; develop data analysis and critical thinking skills through individual research projects; and live, work, and collaborate effectively with others at a remote mountain-top observatory. Interns are typically undergraduate students or recent graduates of atmospheric science programs and are selected from a highly competitive field of applicants. The summer 2013 interns worked on a variety of research projects, ranging from developing a forecast tool for the gustiness of wind at the summit to understanding the evolution of atmospheric and environmental conditions that lead to avalanches in nearby Tuckerman Ravine. To accomplish their research projects, the interns learned how hourly weather observations are made, used data analysis software, and practiced critical thinking about their methods and results. Weekly meetings with the interns and the MWO director of research allowed for the sharing of research progress, peer feedback, and practice presenting scientific results. The internships ended with presentations of their scientific research to MWO observers, staff, and observatory members. Post-internship survey responses revealed the program was highly effective at meeting its goals and provided constructive suggestions for future internship programs.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-06-01
    Description: The U.S. Climate Reference Network (USCRN) monitors precipitation using a well-shielded Geonor T-200B gauge. To ensure the quality and continuity of the data record, the USCRN adopted an innovative approach to monitor precipitation using redundant technology: three vibrating-wire load sensors measuring the liquid depth of a weighing-bucket gauge. In addition to detecting and flagging suboptimally operating sensors, quality assurance (QA) approaches also combine the redundant observations into a precipitation measurement. As an early adopter of this technology, USCRN has pioneered an effort to develop QA strategies for such precipitation systems. The initial USCRN approach to calculating precipitation from redundant depth observations, pairwise calculation (pairCalc), was found to be sensitive to sensor noise and gauge evaporation. These findings led to the development of a new approach to calculating precipitation that minimized these nonprecipitation impacts using a weighted average calculation (wavgCalc). The two calculation approaches were evaluated using station data and simulated precipitation scenarios with a known signal. The new QA system had consistently lower measures of error for simulated precipitation events. Improved handling of sensor noise and gauge evaporation led to increases in network total precipitation of 1.6% on average. These results indicate the new calculation system will improve the quality of USCRN precipitation measurements, making them a more reliable reference dataset with the capacity to monitor the nation’s precipitation trends (mean and extremes). In addition, this study provides valuable insight into the development and evaluation of QA systems, particularly for networks adopting redundant approaches to monitoring precipitation.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-07-30
    Description: The structure, variability, and regional connectivity of the Tokar Gap jet (TGJ) are described using WRF Model analyses and supporting atmospheric datasets from the East African–Red Sea–Arabian Peninsula (EARSAP) region during summer 2008. Sources of the TGJ’s unique quasi-diurnal nature and association with atypically high atmospheric moisture transport are traced back to larger-scale atmospheric dynamics influencing its forcing. These include seasonal shifts in the intertropical convergence zone (ITCZ), variability of the monsoon and North African wind regimes, and ties to other orographic flow patterns. Strong modulation of the TGJ by regional processes such as the desert heating cycle, wind convergence at the ITCZ surface front, and the local land–sea breeze cycle are described. Two case studies present the interplay of these influences in detail. The first of these was an “extreme” gap wind event on 12 July, in which horizontal velocities in the Tokar Gap exceeded 26 m s−1 and the flow from the jet extended the full width of the Red Sea basin. This event coincided with development of a large mesoscale convective complex (MCC) and precipitation at the entrance of the Tokar Gap as well as smaller gaps downstream along the Arabian Peninsula. More typical behavior of the TGJ during the 2008 summer is discussed using a second case study on 19 July. Downwind impact of the TGJ is evaluated using Lagrangian model trajectories and analysis of the lateral moisture fluxes (LMFs) during jet events. These results suggest means by which TGJ contributes to large LMFs and has potential bearing upon Sahelian rainfall and MCC development.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-09-01
    Description: The upscale aggregation of convection is used to understand the emergence of rotating, coherent midtropospheric structures and the subsequent process of tropical cyclone formation. The Cloud Model, version 1 (CM1), is integrated on an f plane with uniform sea surface temperature (SST) and prescribed uniform background flow. Deep convection is maintained by surface fluxes from an ocean with uniform surface temperature. Convection begins to organize simultaneously into moist and dry midtropospheric patches after 10 days. After 20 days, the patches begin to rotate on relatively small scales. Moist cyclonic vortices merge, eventually forming a single dominant vortex that subsequently forms a tropical cyclone on a realistic time scale of about 5 days. Radiation that interacts with clouds and water vapor aids in forming coherent rotating structures. Using the path to genesis provided by the aggregated solution, the relationship between thermodynamic changes within the vortex and changes in the character of convection prior to genesis is explored. Consistent with previous studies, the approach to saturation within the midtropospheric vortex accelerates the genesis process. A novel result is that, prior to genesis, downdrafts become widespread and somewhat stronger. The increased downdraft mass flux leads to stronger and larger surface cold pools. Shear–cold pool dynamics promote the organization of lower-tropospheric updrafts that spin up the surface vortex. It is inferred that the observed inconsistency between convective intensity and thermodynamic stabilization prior to genesis results from sampling limitations of the observations wherein the important cold pool gradients are unresolved.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-02-01
    Description: Tropical cyclone (TC) development near upper-level potential vorticity (PV) streamers in the North Atlantic is studied from synoptic climatology, composite, and case study perspectives. Midlatitude anticyclonic wave breaking is instrumental in driving PV streamers into subtropical and tropical latitudes, in particular near the time-mean midocean trough identified previously as the tropical upper-tropospheric trough. Twelve TCs developed within one Rossby radius of PV streamers in the North Atlantic from June through November 2004–08. This study uses composite analysis in the disturbance-relative framework to compare the structural and thermodynamic evolution for developing and nondeveloping cases. The results show that incipient tropical disturbances are embedded in an environment characterized by 850–200-hPa westerly vertical wind shear and mid- and upper-level quasigeostrophic ascent associated with the PV streamer, with minor differences between developing and nondeveloping cases. The key difference in synoptic-scale flow between developing and nondeveloping cases is the strength of the anticyclone north of the incipient tropical disturbance. The developing cases are marked by a stronger near-surface pressure gradient and attendant easterly flow north of the vortex, which drives enhanced surface latent heat fluxes and westward (upshear) water vapor transport. This evolution in water vapor facilitates an upshear propagation of convection, and the diabatically influenced divergent outflow erodes the PV streamer aloft by negative advection of PV by the divergent wind. This result suggests that the PV streamer plays a secondary role in TC development, with the structure and intensity of the synoptic-scale anticyclone north of the incipient vortex playing a primary role.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-03-01
    Description: The oceanic response to surface loading, such as that related to atmospheric pressure, freshwater exchange, and changes in the gravity field, is essential to our understanding of sea level variability. In particular, so-called self-attraction and loading (SAL) effects caused by the redistribution of mass within the land–atmosphere–ocean system can have a measurable impact on sea level. In this study, the nature of SAL-induced variability in sea level is examined in terms of its equilibrium (static) and nonequilibrium (dynamic) components, using a general circulation model that implicitly includes the physics of SAL. The additional SAL forcing is derived by decomposing ocean mass anomalies into spherical harmonics and then applying Love numbers to infer associated crustal displacements and gravitational shifts. This implementation of SAL physics incurs only a relatively small computational cost. Effects of SAL on sea level amount to about 10% of the applied surface loading on average but depend strongly on location. The dynamic component exhibits large-scale basinwide patterns, with considerable contributions from subweekly time scales. Departures from equilibrium decrease toward longer time scales but are not totally negligible in many places. Ocean modeling studies should benefit from using a dynamical implementation of SAL as used here.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-06-01
    Description: Statistical, dynamical, and statistical–dynamical hybrid models have been developed in past decades for the seasonal prediction of North Atlantic hurricane numbers. These models’ prediction skills show considerable decadal variability, with particularly poor performance in the past few years. Here, environmental factors that affect hurricane activities are reevaluated to develop a new statistical model for seasonal prediction by 1 June of each year. The predictors include the April–May multivariate ENSO index (MEI) conditioned upon the Atlantic multidecadal oscillation (AMO) index, the power of the average zonal pseudo–wind stress across the North Atlantic in May, and the average March–May tropical Atlantic sea surface temperature. When compared to the actual number of hurricanes each year from 1950 to 2013, this model has a root-mean-square error (RMSE) of 1.91 with a correlation coefficient of 0.71. It shows a 39% improvement in RMSE over a no-skill metric (based on the 5-yr running mean of seasonal hurricane counts) for the period 2001–13. It also outperforms three statistical–dynamical hybrid models [CPC, Colorado State University (CSU), and Tropical Storm Risk (TSR)] by more than 25% for the same period. Furthermore, two approaches are developed to provide the uncertainty ranges around the predicted (deterministic) hurricane number per season that better encompass the range of uncertainty than does the standard method of adding/subtracting a standard deviation of the errors.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...