ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-13
    Description: Epileptic encephalopathies are a devastating group of severe childhood epilepsy disorders for which the cause is often unknown. Here we report a screen for de novo mutations in patients with two classical epileptic encephalopathies: infantile spasms (n = 149) and Lennox-Gastaut syndrome (n = 115). We sequenced the exomes of 264 probands, and their parents, and confirmed 329 de novo mutations. A likelihood analysis showed a significant excess of de novo mutations in the approximately 4,000 genes that are the most intolerant to functional genetic variation in the human population (P = 2.9 x 10(-3)). Among these are GABRB3, with de novo mutations in four patients, and ALG13, with the same de novo mutation in two patients; both genes show clear statistical evidence of association with epileptic encephalopathy. Given the relevant site-specific mutation rates, the probabilities of these outcomes occurring by chance are P = 4.1 x 10(-10) and P = 7.8 x 10(-12), respectively. Other genes with de novo mutations in this cohort include CACNA1A, CHD2, FLNA, GABRA1, GRIN1, GRIN2B, HNRNPU, IQSEC2, MTOR and NEDD4L. Finally, we show that the de novo mutations observed are enriched in specific gene sets including genes regulated by the fragile X protein (P 〈 10(-8)), as has been reported previously for autism spectrum disorders.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773011/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773011/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Epi4K Consortium -- Epilepsy Phenome/Genome Project -- Allen, Andrew S -- Berkovic, Samuel F -- Cossette, Patrick -- Delanty, Norman -- Dlugos, Dennis -- Eichler, Evan E -- Epstein, Michael P -- Glauser, Tracy -- Goldstein, David B -- Han, Yujun -- Heinzen, Erin L -- Hitomi, Yuki -- Howell, Katherine B -- Johnson, Michael R -- Kuzniecky, Ruben -- Lowenstein, Daniel H -- Lu, Yi-Fan -- Madou, Maura R Z -- Marson, Anthony G -- Mefford, Heather C -- Esmaeeli Nieh, Sahar -- O'Brien, Terence J -- Ottman, Ruth -- Petrovski, Slave -- Poduri, Annapurna -- Ruzzo, Elizabeth K -- Scheffer, Ingrid E -- Sherr, Elliott H -- Yuskaitis, Christopher J -- Abou-Khalil, Bassel -- Alldredge, Brian K -- Bautista, Jocelyn F -- Boro, Alex -- Cascino, Gregory D -- Consalvo, Damian -- Crumrine, Patricia -- Devinsky, Orrin -- Fiol, Miguel -- Fountain, Nathan B -- French, Jacqueline -- Friedman, Daniel -- Geller, Eric B -- Glynn, Simon -- Haut, Sheryl R -- Hayward, Jean -- Helmers, Sandra L -- Joshi, Sucheta -- Kanner, Andres -- Kirsch, Heidi E -- Knowlton, Robert C -- Kossoff, Eric H -- Kuperman, Rachel -- McGuire, Shannon M -- Motika, Paul V -- Novotny, Edward J -- Paolicchi, Juliann M -- Parent, Jack M -- Park, Kristen -- Shellhaas, Renee A -- Shih, Jerry J -- Singh, Rani -- Sirven, Joseph -- Smith, Michael C -- Sullivan, Joseph -- Lin Thio, Liu -- Venkat, Anu -- Vining, Eileen P G -- Von Allmen, Gretchen K -- Weisenberg, Judith L -- Widdess-Walsh, Peter -- Winawer, Melodie R -- 1RC2NS070342/NS/NINDS NIH HHS/ -- NS053998/NS/NINDS NIH HHS/ -- NS077274/NS/NINDS NIH HHS/ -- NS077276/NS/NINDS NIH HHS/ -- NS077303/NS/NINDS NIH HHS/ -- NS077364/NS/NINDS NIH HHS/ -- R56AI098588/AI/NIAID NIH HHS/ -- U01 NS053998/NS/NINDS NIH HHS/ -- U01 NS077274/NS/NINDS NIH HHS/ -- U01 NS077276/NS/NINDS NIH HHS/ -- U01 NS077303/NS/NINDS NIH HHS/ -- U01 NS077364/NS/NINDS NIH HHS/ -- U01AI067854/AI/NIAID NIH HHS/ -- UL1 TR000005/TR/NCATS NIH HHS/ -- England -- Nature. 2013 Sep 12;501(7466):217-21. doi: 10.1038/nature12439. Epub 2013 Aug 11.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23934111" target="_blank"〉PubMed〈/a〉
    Keywords: Child Development Disorders, Pervasive ; Cohort Studies ; Exome/genetics ; Female ; Fragile X Mental Retardation Protein/metabolism ; Genetic Predisposition to Disease/genetics ; Humans ; Infant ; Intellectual Disability/*genetics/physiopathology ; Lennox Gastaut Syndrome ; Male ; Mutation/*genetics ; Mutation Rate ; N-Acetylglucosaminyltransferases/genetics ; Probability ; Receptors, GABA-A/genetics ; Spasms, Infantile/*genetics/physiopathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-11-01
    Description: The 2002-3 pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV) was one of the most significant public health events in recent history. An ongoing outbreak of Middle East respiratory syndrome coronavirus suggests that this group of viruses remains a key threat and that their distribution is wider than previously recognized. Although bats have been suggested to be the natural reservoirs of both viruses, attempts to isolate the progenitor virus of SARS-CoV from bats have been unsuccessful. Diverse SARS-like coronaviruses (SL-CoVs) have now been reported from bats in China, Europe and Africa, but none is considered a direct progenitor of SARS-CoV because of their phylogenetic disparity from this virus and the inability of their spike proteins to use the SARS-CoV cellular receptor molecule, the human angiotensin converting enzyme II (ACE2). Here we report whole-genome sequences of two novel bat coronaviruses from Chinese horseshoe bats (family: Rhinolophidae) in Yunnan, China: RsSHC014 and Rs3367. These viruses are far more closely related to SARS-CoV than any previously identified bat coronaviruses, particularly in the receptor binding domain of the spike protein. Most importantly, we report the first recorded isolation of a live SL-CoV (bat SL-CoV-WIV1) from bat faecal samples in Vero E6 cells, which has typical coronavirus morphology, 99.9% sequence identity to Rs3367 and uses ACE2 from humans, civets and Chinese horseshoe bats for cell entry. Preliminary in vitro testing indicates that WIV1 also has a broad species tropism. Our results provide the strongest evidence to date that Chinese horseshoe bats are natural reservoirs of SARS-CoV, and that intermediate hosts may not be necessary for direct human infection by some bat SL-CoVs. They also highlight the importance of pathogen-discovery programs targeting high-risk wildlife groups in emerging disease hotspots as a strategy for pandemic preparedness.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ge, Xing-Yi -- Li, Jia-Lu -- Yang, Xing-Lou -- Chmura, Aleksei A -- Zhu, Guangjian -- Epstein, Jonathan H -- Mazet, Jonna K -- Hu, Ben -- Zhang, Wei -- Peng, Cheng -- Zhang, Yu-Ji -- Luo, Chu-Ming -- Tan, Bing -- Wang, Ning -- Zhu, Yan -- Crameri, Gary -- Zhang, Shu-Yi -- Wang, Lin-Fa -- Daszak, Peter -- Shi, Zheng-Li -- R01AI079231/AI/NIAID NIH HHS/ -- R01TW005869/TW/FIC NIH HHS/ -- R56TW009502/TW/FIC NIH HHS/ -- England -- Nature. 2013 Nov 28;503(7477):535-8. doi: 10.1038/nature12711. Epub 2013 Oct 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Emerging Infectious Diseases, State Key Laboratory of Virology, Wuhan Institute of Virology of the Chinese Academy of Sciences, Wuhan 430071, China [2].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24172901" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cercopithecus aethiops ; China ; Chiroptera/*virology ; Disease Reservoirs/virology ; Feces/virology ; Fluorescent Antibody Technique ; Genome, Viral/genetics ; Host Specificity ; Humans ; Molecular Sequence Data ; Pandemics/prevention & control/veterinary ; Peptidyl-Dipeptidase A/genetics/*metabolism ; Real-Time Polymerase Chain Reaction ; Receptors, Virus/genetics/metabolism ; SARS Virus/genetics/*isolation & purification/*metabolism/ultrastructure ; Severe Acute Respiratory Syndrome/prevention & ; control/transmission/veterinary/virology ; Species Specificity ; Spike Glycoprotein, Coronavirus/chemistry/metabolism ; Vero Cells ; Virion/isolation & purification/ultrastructure ; Virus Internalization ; Viverridae/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...