ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-13
    Description: Epileptic encephalopathies are a devastating group of severe childhood epilepsy disorders for which the cause is often unknown. Here we report a screen for de novo mutations in patients with two classical epileptic encephalopathies: infantile spasms (n = 149) and Lennox-Gastaut syndrome (n = 115). We sequenced the exomes of 264 probands, and their parents, and confirmed 329 de novo mutations. A likelihood analysis showed a significant excess of de novo mutations in the approximately 4,000 genes that are the most intolerant to functional genetic variation in the human population (P = 2.9 x 10(-3)). Among these are GABRB3, with de novo mutations in four patients, and ALG13, with the same de novo mutation in two patients; both genes show clear statistical evidence of association with epileptic encephalopathy. Given the relevant site-specific mutation rates, the probabilities of these outcomes occurring by chance are P = 4.1 x 10(-10) and P = 7.8 x 10(-12), respectively. Other genes with de novo mutations in this cohort include CACNA1A, CHD2, FLNA, GABRA1, GRIN1, GRIN2B, HNRNPU, IQSEC2, MTOR and NEDD4L. Finally, we show that the de novo mutations observed are enriched in specific gene sets including genes regulated by the fragile X protein (P 〈 10(-8)), as has been reported previously for autism spectrum disorders.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773011/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773011/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Epi4K Consortium -- Epilepsy Phenome/Genome Project -- Allen, Andrew S -- Berkovic, Samuel F -- Cossette, Patrick -- Delanty, Norman -- Dlugos, Dennis -- Eichler, Evan E -- Epstein, Michael P -- Glauser, Tracy -- Goldstein, David B -- Han, Yujun -- Heinzen, Erin L -- Hitomi, Yuki -- Howell, Katherine B -- Johnson, Michael R -- Kuzniecky, Ruben -- Lowenstein, Daniel H -- Lu, Yi-Fan -- Madou, Maura R Z -- Marson, Anthony G -- Mefford, Heather C -- Esmaeeli Nieh, Sahar -- O'Brien, Terence J -- Ottman, Ruth -- Petrovski, Slave -- Poduri, Annapurna -- Ruzzo, Elizabeth K -- Scheffer, Ingrid E -- Sherr, Elliott H -- Yuskaitis, Christopher J -- Abou-Khalil, Bassel -- Alldredge, Brian K -- Bautista, Jocelyn F -- Boro, Alex -- Cascino, Gregory D -- Consalvo, Damian -- Crumrine, Patricia -- Devinsky, Orrin -- Fiol, Miguel -- Fountain, Nathan B -- French, Jacqueline -- Friedman, Daniel -- Geller, Eric B -- Glynn, Simon -- Haut, Sheryl R -- Hayward, Jean -- Helmers, Sandra L -- Joshi, Sucheta -- Kanner, Andres -- Kirsch, Heidi E -- Knowlton, Robert C -- Kossoff, Eric H -- Kuperman, Rachel -- McGuire, Shannon M -- Motika, Paul V -- Novotny, Edward J -- Paolicchi, Juliann M -- Parent, Jack M -- Park, Kristen -- Shellhaas, Renee A -- Shih, Jerry J -- Singh, Rani -- Sirven, Joseph -- Smith, Michael C -- Sullivan, Joseph -- Lin Thio, Liu -- Venkat, Anu -- Vining, Eileen P G -- Von Allmen, Gretchen K -- Weisenberg, Judith L -- Widdess-Walsh, Peter -- Winawer, Melodie R -- 1RC2NS070342/NS/NINDS NIH HHS/ -- NS053998/NS/NINDS NIH HHS/ -- NS077274/NS/NINDS NIH HHS/ -- NS077276/NS/NINDS NIH HHS/ -- NS077303/NS/NINDS NIH HHS/ -- NS077364/NS/NINDS NIH HHS/ -- R56AI098588/AI/NIAID NIH HHS/ -- U01 NS053998/NS/NINDS NIH HHS/ -- U01 NS077274/NS/NINDS NIH HHS/ -- U01 NS077276/NS/NINDS NIH HHS/ -- U01 NS077303/NS/NINDS NIH HHS/ -- U01 NS077364/NS/NINDS NIH HHS/ -- U01AI067854/AI/NIAID NIH HHS/ -- UL1 TR000005/TR/NCATS NIH HHS/ -- England -- Nature. 2013 Sep 12;501(7466):217-21. doi: 10.1038/nature12439. Epub 2013 Aug 11.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23934111" target="_blank"〉PubMed〈/a〉
    Keywords: Child Development Disorders, Pervasive ; Cohort Studies ; Exome/genetics ; Female ; Fragile X Mental Retardation Protein/metabolism ; Genetic Predisposition to Disease/genetics ; Humans ; Infant ; Intellectual Disability/*genetics/physiopathology ; Lennox Gastaut Syndrome ; Male ; Mutation/*genetics ; Mutation Rate ; N-Acetylglucosaminyltransferases/genetics ; Probability ; Receptors, GABA-A/genetics ; Spasms, Infantile/*genetics/physiopathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-02-24
    Description: Amyotrophic lateral sclerosis (ALS) is a devastating neurological disease with no effective treatment. We report the results of a moderate-scale sequencing study aimed at increasing the number of genes known to contribute to predisposition for ALS. We performed whole-exome sequencing of 2869 ALS patients and 6405 controls. Several known ALS genes were found to be associated, and TBK1 (the gene encoding TANK-binding kinase 1) was identified as an ALS gene. TBK1 is known to bind to and phosphorylate a number of proteins involved in innate immunity and autophagy, including optineurin (OPTN) and p62 (SQSTM1/sequestosome), both of which have also been implicated in ALS. These observations reveal a key role of the autophagic pathway in ALS and suggest specific targets for therapeutic intervention.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4437632/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4437632/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cirulli, Elizabeth T -- Lasseigne, Brittany N -- Petrovski, Slave -- Sapp, Peter C -- Dion, Patrick A -- Leblond, Claire S -- Couthouis, Julien -- Lu, Yi-Fan -- Wang, Quanli -- Krueger, Brian J -- Ren, Zhong -- Keebler, Jonathan -- Han, Yujun -- Levy, Shawn E -- Boone, Braden E -- Wimbish, Jack R -- Waite, Lindsay L -- Jones, Angela L -- Carulli, John P -- Day-Williams, Aaron G -- Staropoli, John F -- Xin, Winnie W -- Chesi, Alessandra -- Raphael, Alya R -- McKenna-Yasek, Diane -- Cady, Janet -- Vianney de Jong, J M B -- Kenna, Kevin P -- Smith, Bradley N -- Topp, Simon -- Miller, Jack -- Gkazi, Athina -- FALS Sequencing Consortium -- Al-Chalabi, Ammar -- van den Berg, Leonard H -- Veldink, Jan -- Silani, Vincenzo -- Ticozzi, Nicola -- Shaw, Christopher E -- Baloh, Robert H -- Appel, Stanley -- Simpson, Ericka -- Lagier-Tourenne, Clotilde -- Pulst, Stefan M -- Gibson, Summer -- Trojanowski, John Q -- Elman, Lauren -- McCluskey, Leo -- Grossman, Murray -- Shneider, Neil A -- Chung, Wendy K -- Ravits, John M -- Glass, Jonathan D -- Sims, Katherine B -- Van Deerlin, Vivianna M -- Maniatis, Tom -- Hayes, Sebastian D -- Ordureau, Alban -- Swarup, Sharan -- Landers, John -- Baas, Frank -- Allen, Andrew S -- Bedlack, Richard S -- Harper, J Wade -- Gitler, Aaron D -- Rouleau, Guy A -- Brown, Robert -- Harms, Matthew B -- Cooper, Gregory M -- Harris, Tim -- Myers, Richard M -- Goldstein, David B -- 089701/Wellcome Trust/United Kingdom -- K08 NS075094/NS/NINDS NIH HHS/ -- P01 AG017586/AG/NIA NIH HHS/ -- P01 AG032953/AG/NIA NIH HHS/ -- P50 AG025688/AG/NIA NIH HHS/ -- R37 NS033123/NS/NINDS NIH HHS/ -- R37 NS083524/NS/NINDS NIH HHS/ -- T32 GM007754/GM/NIGMS NIH HHS/ -- TL1 TR001066/TR/NCATS NIH HHS/ -- UL1 TR001067/TR/NCATS NIH HHS/ -- New York, N.Y. -- Science. 2015 Mar 27;347(6229):1436-41. doi: 10.1126/science.aaa3650. Epub 2015 Feb 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Applied Genomics and Precision Medicine, Duke University School of Medicine, Durham, NC 27708, USA. ; HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA. ; Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA. ; Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA. ; Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada. ; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA. ; Duke University School of Medicine, Durham, NC 27708, USA. ; Biogen Idec, Cambridge, MA 02142, USA. ; Neurogenetics DNA Diagnostic Laboratory, Center for Human Genetics Research, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA. ; Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA. ; Department of Genome Analysis, Academic Medical Center, Meibergdreef 9, 1105AZ Amsterdam, Netherlands. ; Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland. ; Department of Basic and Clinical Neuroscience, King's College London, Institute of Psychiatry, Psychology and Neuroscience, London SE5 8AF, UK. ; Department of Neurology, Brain Center Rudolf Magnus, University Medical Centre Utrecht, 3508 GA Utrecht, Netherlands. ; Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan 20149, Italy, and Department of Pathophysiology and Transplantation, Dino Ferrari Center, Universita degli Studi di Milano, Milan 20122, Italy. ; Cedars Sinai Medical Center, Los Angeles, CA 90048, USA. ; Houston Methodist Hospital, Houston, TX 77030, USA, and Weill Cornell Medical College of Cornell University, New York, NY 10065, USA. ; Ludwig Institute for Cancer Research and Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA. ; Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA. ; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Neurology, Penn ALS Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Neurology, Penn Frontotemporal Degeneration Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA. ; Department of Pediatrics and Medicine, Columbia University, New York, NY 10032, USA. ; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA. ; Department of Neurology, Emory University, Atlanta, GA 30322, USA. ; Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10027, USA. ; Biogen Idec, Cambridge, MA 02142, USA. Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA. ; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA. ; Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27708, USA. ; Duke ALS Clinic and Durham VA Medical Center, Durham, NC 27708, USA. ; Biogen Idec, Cambridge, MA 02142, USA. tim.harris@biogenidec.com.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25700176" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/genetics/metabolism ; Adolescent ; Adult ; Aged ; Aged, 80 and over ; Amyotrophic Lateral Sclerosis/*genetics ; Autophagy/*genetics ; Exome/*genetics ; Female ; Genes ; Genetic Association Studies ; *Genetic Predisposition to Disease ; Humans ; Male ; Middle Aged ; Protein Binding ; Protein-Serine-Threonine Kinases/*genetics/metabolism ; Risk ; Sequence Analysis, DNA ; Transcription Factor TFIIIA/genetics/metabolism ; Young Adult
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-06-25
    Description: The transcription factor c-MYC is stabilized and activated by phosphorylation at serine 62 (S62) in breast cancer. Protein phosphatase 2A (PP2A) is a critical negative regulator of c-MYC through its ability to dephosphorylate S62. By inactivating c-MYC and other key signaling pathways, PP2A plays an important tumor suppressor function. Two...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial and engineering chemistry 7 (1968), S. 220-222 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1435-0661
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: 2 -controlled cuvette and stripping system to trace a 14CO2 pulse-label from photosynthetic assimilation by wetland plants (in this study Orontium aquaticum L.) to its release as 14CH4 by microbial respiration. The system maintained cuvette CO2 concentrations to within ±5 Pa of the set-point, and it allowed continuous recovery of 14CO2 and 14CH4 for 17 d without damage to the enclosed plant. The first emissions of 14CH4 were detected 〈12 h after photosynthetic assimilation of the label. The 14CH4 flux increased linearly from 0.12 Bq min-1 at 12 h to 3.0 Bq min-1 at 5 d, then plateaued at ≈ 2 Bq min-1. We could not distinguish between 14CH4 produced by aceticlastic methanogenesis vs. that produced by CO2 reduction. Radiocarbon activity in the soil dissolved inorganic C pool peaked on the first day then declined slowly. We did not detect radiocarbon activity in soil solution pools of several low molecular weight organic acids (acetate, formate, lactate, and propionate), but the label was detected in the bulk dissolved organic C pool. We argue that radiocarbon will be useful for investigating the contribution of root exudates to methanogenic metabolism, but data interpretation will require separation of the relative contribution of CO2 reduction and aceticlastic methanogenesis to overall 14CH4 emissions. Processes such as CH4 oxidation and acetogenesis must also be considered in quantitative estimates of photosynthetic support of methanogenesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1999-05-01
    Print ISSN: 0361-5995
    Electronic ISSN: 1435-0661
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    Publication Date: 1978-03-01
    Print ISSN: 1078-7275
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 2000-04-01
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of Ecological Society of America.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...