ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-13
    Description: Estimates suggest that only one-tenth of the true fungal diversity has been described. Among numerous fungal lineages known only from environmental DNA sequences, Soil Clone Group 1 is the most ubiquitous. These globally distributed fungi may dominate below-ground fungal communities, but their placement in the fungal tree of life has been uncertain. Here, we report cultures of this group and describe the class, Archaeorhizomycetes, phylogenetically placed within subphylum Taphrinomycotina in the Ascomycota. Archaeorhizomycetes comprises hundreds of cryptically reproducing filamentous species that do not form recognizable mycorrhizal structures and have saprotrophic potential, yet are omnipresent in roots and rhizosphere soil and show ecosystem and host root habitat specificity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosling, Anna -- Cox, Filipa -- Cruz-Martinez, Karelyn -- Ihrmark, Katarina -- Grelet, Gwen-Aelle -- Lindahl, Bjorn D -- Menkis, Audrius -- James, Timothy Y -- New York, N.Y. -- Science. 2011 Aug 12;333(6044):876-9. doi: 10.1126/science.1206958.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Forest Mycology and Pathology, Uppsala BioCentre, SLU, Box 7026, 750 07 Uppsala, Sweden. anna.rosling@slu.se〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21836015" target="_blank"〉PubMed〈/a〉
    Keywords: *Ascomycota/classification/genetics/growth & development/isolation & purification ; Coniferophyta/microbiology ; *Ecosystem ; Genes, Fungal ; Genes, rRNA ; Meristem/*microbiology ; Molecular Sequence Data ; *Mycorrhizae/classification/genetics ; Phylogeny ; Rhizosphere ; *Soil Microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-03-12
    Description: DNA topoisomerase II completely removes DNA intertwining, or catenation, between sister chromatids before they are segregated during cell division. How this occurs throughout the genome is poorly understood. We demonstrate that in yeast, centromeric plasmids undergo a dramatic change in their topology as the cells pass through mitosis. This change is characterized by positive supercoiling of the DNA and requires mitotic spindles and the condensin factor Smc2. When mitotic positive supercoiling occurs on decatenated DNA, it is rapidly relaxed by topoisomerase II. However, when positive supercoiling takes place in catenated plasmid, topoisomerase II activity is directed toward decatenation of the molecules before relaxation. Thus, a topological change on DNA drives topoisomerase II to decatenate molecules during mitosis, potentially driving the full decatenation of the genome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baxter, J -- Sen, N -- Martinez, V Lopez -- De Carandini, M E Monturus -- Schvartzman, J B -- Diffley, J F X -- Aragon, L -- MC_U120074328/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Cancer Research UK/United Kingdom -- New York, N.Y. -- Science. 2011 Mar 11;331(6022):1328-32. doi: 10.1126/science.1201538.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, UK. Jon.Baxter@sussex.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21393545" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle ; Chromosome Segregation ; DNA Replication ; DNA Topoisomerases, Type II/*metabolism ; DNA, Catenated/*chemistry/metabolism ; DNA, Fungal/*chemistry/metabolism ; DNA, Superhelical/*chemistry/metabolism ; Dimerization ; *Mitosis ; Nucleic Acid Conformation ; Plasmids ; Saccharomyces cerevisiae ; Spindle Apparatus/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-02-12
    Description: Splicing of mammalian precursor transfer RNA (tRNA) molecules involves two enzymatic steps. First, intron removal by the tRNA splicing endonuclease generates separate 5' and 3' exons. In animals, the second step predominantly entails direct exon ligation by an elusive RNA ligase. Using activity-guided purification of tRNA ligase from HeLa cell extracts, we identified HSPC117, a member of the UPF0027 (RtcB) family, as the essential subunit of a tRNA ligase complex. RNA interference-mediated depletion of HSPC117 inhibited maturation of intron-containing pre-tRNA both in vitro and in living cells. The high sequence conservation of HSPC117/RtcB proteins is suggestive of RNA ligase roles of this protein family in various organisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Popow, Johannes -- Englert, Markus -- Weitzer, Stefan -- Schleiffer, Alexander -- Mierzwa, Beata -- Mechtler, Karl -- Trowitzsch, Simon -- Will, Cindy L -- Luhrmann, Reinhard -- Soll, Dieter -- Martinez, Javier -- New York, N.Y. -- Science. 2011 Feb 11;331(6018):760-4. doi: 10.1126/science.1197847.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), A-1030 Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21311021" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Exons ; HeLa Cells ; Humans ; Introns ; Molecular Sequence Data ; Proteins/*chemistry/isolation & purification/*metabolism ; RNA Interference ; RNA Ligase (ATP)/*chemistry/isolation & purification/*metabolism ; RNA Precursors/*metabolism ; *RNA Splicing ; RNA, Transfer/*metabolism ; Spliceosomes/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-09-03
    Description: Recent studies suggest that unidentified prokaryotes fix inorganic carbon at globally significant rates in the immense dark ocean. Using single-cell sorting and whole-genome amplification of prokaryotes from two subtropical gyres, we obtained genomic DNA from 738 cells representing most cosmopolitan lineages. Multiple cells of Deltaproteobacteria cluster SAR324, Gammaproteobacteria clusters ARCTIC96BD-19 and Agg47, and some Oceanospirillales from the lower mesopelagic contained ribulose-1,5-bisphosphate carboxylase-oxygenase and sulfur oxidation genes. These results corroborated community DNA and RNA profiling from diverse geographic regions. The SAR324 genomes also suggested C(1) metabolism and a particle-associated life-style. Microautoradiography and fluorescence in situ hybridization confirmed bicarbonate uptake and particle association of SAR324 cells. Our study suggests potential chemolithoautotrophy in several uncultured Proteobacteria lineages that are ubiquitous in the dark oxygenated ocean and provides new perspective on carbon cycling in the ocean's largest habitat.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Swan, Brandon K -- Martinez-Garcia, Manuel -- Preston, Christina M -- Sczyrba, Alexander -- Woyke, Tanja -- Lamy, Dominique -- Reinthaler, Thomas -- Poulton, Nicole J -- Masland, E Dashiell P -- Gomez, Monica Lluesma -- Sieracki, Michael E -- DeLong, Edward F -- Herndl, Gerhard J -- Stepanauskas, Ramunas -- New York, N.Y. -- Science. 2011 Sep 2;333(6047):1296-300. doi: 10.1126/science.1203690.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bigelow Laboratory for Ocean Sciences, 180 McKown Point Road, Post Office Box 475, West Boothbay Harbor, ME 04575, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21885783" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/genetics/metabolism ; Carbon Cycle ; Carbon Dioxide/metabolism ; *Chemoautotrophic Growth ; Darkness ; Deltaproteobacteria/classification/genetics/growth & development/*metabolism ; Gammaproteobacteria/classification/genetics/growth & development/*metabolism ; Genes, Bacterial ; Genome, Bacterial ; Metagenome ; Molecular Sequence Data ; Oceans and Seas ; Oxidation-Reduction ; Phylogeny ; Ribulose-Bisphosphate Carboxylase/genetics ; Seawater/*microbiology ; Sulfur/metabolism ; Sulfur Compounds/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2011-10-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carrero-Martinez, Franklin A -- New York, N.Y. -- Science. 2011 Oct 21;334(6054):313. doi: 10.1126/science.1209555.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Puerto Rico, Mayaguez, Mayaguez, PR 00681. franklin.carrero@upr.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22021843" target="_blank"〉PubMed〈/a〉
    Keywords: Faculty ; Humans ; Mentors ; Minority Groups/*education ; *Research ; *Universities
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-01-08
    Description: Multifunctional applications of textiles have been limited by the inability to spin important materials into yarns. Generically applicable methods are demonstrated for producing weavable yarns comprising up to 95 weight percent of otherwise unspinnable particulate or nanofiber powders that remain highly functional. Scrolled 50-nanometer-thick carbon nanotube sheets confine these powders in the galleries of irregular scroll sacks whose observed complex structures are related to twist-dependent extension of Archimedean spirals, Fermat spirals, or spiral pairs into scrolls. The strength and electronic connectivity of a small weight fraction of scrolled carbon nanotube sheet enables yarn weaving, sewing, knotting, braiding, and charge collection. This technology is used to make yarns of superconductors, lithium-ion battery materials, graphene ribbons, catalytic nanofibers for fuel cells, and titanium dioxide for photocatalysis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lima, Marcio D -- Fang, Shaoli -- Lepro, Xavier -- Lewis, Chihye -- Ovalle-Robles, Raquel -- Carretero-Gonzalez, Javier -- Castillo-Martinez, Elizabeth -- Kozlov, Mikhail E -- Oh, Jiyoung -- Rawat, Neema -- Haines, Carter S -- Haque, Mohammad H -- Aare, Vaishnavi -- Stoughton, Stephanie -- Zakhidov, Anvar A -- Baughman, Ray H -- New York, N.Y. -- Science. 2011 Jan 7;331(6013):51-5. doi: 10.1126/science.1195912.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75083, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21212350" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-01-15
    Description: Upper Triassic rocks in northwestern Argentina preserve the most complete record of dinosaurs before their rise to dominance in the Early Jurassic. Here, we describe a previously unidentified basal theropod, reassess its contemporary Eoraptor as a basal sauropodomorph, divide the faunal record of the Ischigualasto Formation with biozones, and bracket the formation with (40)Ar/(39)Ar ages. Some 230 million years ago in the Late Triassic (mid Carnian), the earliest dinosaurs were the dominant terrestrial carnivores and small herbivores in southwestern Pangaea. The extinction of nondinosaurian herbivores is sequential and is not linked to an increase in dinosaurian diversity, which weakens the predominant scenario for dinosaurian ascendancy as opportunistic replacement.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martinez, Ricardo N -- Sereno, Paul C -- Alcober, Oscar A -- Colombi, Carina E -- Renne, Paul R -- Montanez, Isabel P -- Currie, Brian S -- New York, N.Y. -- Science. 2011 Jan 14;331(6014):206-10. doi: 10.1126/science.1198467.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Instituto y Museo de Ciencias Naturales, Universidad Nacional de San Juan, San Juan 5400, Argentina.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21233386" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Argentina ; Biological Evolution ; Bone and Bones/anatomy & histology ; Dinosaurs/*anatomy & histology/*classification ; Extinction, Biological ; Femur/anatomy & histology ; *Fossils ; Phylogeny ; Skull/anatomy & histology ; Spine/anatomy & histology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-06-02
    Description: The retrovirus XMRV (xenotropic murine leukemia virus-related virus) has been detected in human prostate tumors and in blood samples from patients with chronic fatigue syndrome, but these findings have not been replicated. We hypothesized that an understanding of when and how XMRV first arose might help explain the discrepant results. We studied human prostate cancer cell lines CWR22Rv1 and CWR-R1, which produce XMRV virtually identical to the viruses recently found in patient samples, as well as their progenitor human prostate tumor xenograft (CWR22) that had been passaged in mice. We detected XMRV infection in the two cell lines and in the later passage xenografts, but not in the early passages. In particular, we found that the host mice contained two proviruses, PreXMRV-1 and PreXMRV-2, which share 99.92% identity with XMRV over 〉3.2-kilobase stretches of their genomes. We conclude that XMRV was not present in the original CWR22 tumor but was generated by recombination of two proviruses during tumor passaging in mice. The probability that an identical recombinant was generated independently is negligible (~10(-12)); our results suggest that the association of XMRV with human disease is due to contamination of human samples with virus originating from this recombination event.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278917/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3278917/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paprotka, Tobias -- Delviks-Frankenberry, Krista A -- Cingoz, Oya -- Martinez, Anthony -- Kung, Hsing-Jien -- Tepper, Clifford G -- Hu, Wei-Shau -- Fivash, Matthew J Jr -- Coffin, John M -- Pathak, Vinay K -- P30 CA093373/CA/NCI NIH HHS/ -- R01CA150197/CA/NCI NIH HHS/ -- R37 CA 089441/CA/NCI NIH HHS/ -- R37 CA089441/CA/NCI NIH HHS/ -- R37 CA089441-11/CA/NCI NIH HHS/ -- ZIA BC011339-02/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2011 Jul 1;333(6038):97-101. doi: 10.1126/science.1205292. Epub 2011 May 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21628392" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line, Tumor/*virology ; DNA Contamination ; DNA, Viral/analysis ; Endogenous Retroviruses/genetics ; Fatigue Syndrome, Chronic/virology ; Gammaretrovirus/*genetics ; Genes, env ; Genes, gag ; Humans ; Male ; Mice ; Mice, Nude ; Neoplasm Transplantation ; Polymerase Chain Reaction ; Prostatic Neoplasms/*virology ; Proviruses/genetics/isolation & purification ; *Recombination, Genetic ; Transplantation, Heterologous ; Xenotropic murine leukemia virus-related virus/*genetics/*isolation & ; purification
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-01-08
    Description: The Sun's outer atmosphere, or corona, is heated to millions of degrees, considerably hotter than its surface or photosphere. Explanations for this enigma typically invoke the deposition in the corona of nonthermal energy generated by magnetoconvection. However, the coronal heating mechanism remains unknown. We used observations from the Solar Dynamics Observatory and the Hinode solar physics mission to reveal a ubiquitous coronal mass supply in which chromospheric plasma in fountainlike jets or spicules is accelerated upward into the corona, with much of the plasma heated to temperatures between ~0.02 and 0.1 million kelvin (MK) and a small but sufficient fraction to temperatures above 1 MK. These observations provide constraints on the coronal heating mechanism(s) and highlight the importance of the interface region between photosphere and corona.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉De Pontieu, B -- McIntosh, S W -- Carlsson, M -- Hansteen, V H -- Tarbell, T D -- Boerner, P -- Martinez-Sykora, J -- Schrijver, C J -- Title, A M -- New York, N.Y. -- Science. 2011 Jan 7;331(6013):55-8. doi: 10.1126/science.1197738.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street, Organization ADBS, Building 252, Palo Alto, CA 94304, USA. bdp@lmsal.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21212351" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-20
    Description: Most cancer cells are characterized by aneuploidy, an abnormal number of chromosomes. We have identified a clue to the mechanistic origins of aneuploidy through integrative genomic analyses of human tumors. A diverse range of tumor types were found to harbor deletions or inactivating mutations of STAG2, a gene encoding a subunit of the cohesin complex, which regulates the separation of sister chromatids during cell division. Because STAG2 is on the X chromosome, its inactivation requires only a single mutational event. Studying a near-diploid human cell line with a stable karyotype, we found that targeted inactivation of STAG2 led to chromatid cohesion defects and aneuploidy, whereas in two aneuploid human glioblastoma cell lines, targeted correction of the endogenous mutant alleles of STAG2 led to enhanced chromosomal stability. Thus, genetic disruption of cohesin is a cause of aneuploidy in human cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3374335/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3374335/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Solomon, David A -- Kim, Taeyeon -- Diaz-Martinez, Laura A -- Fair, Joshlean -- Elkahloun, Abdel G -- Harris, Brent T -- Toretsky, Jeffrey A -- Rosenberg, Steven A -- Shukla, Neerav -- Ladanyi, Marc -- Samuels, Yardena -- James, C David -- Yu, Hongtao -- Kim, Jung-Sik -- Waldman, Todd -- CA097257/CA/NCI NIH HHS/ -- R01 CA133662/CA/NCI NIH HHS/ -- R01 CA138212/CA/NCI NIH HHS/ -- R01 CA169345/CA/NCI NIH HHS/ -- R01CA115699/CA/NCI NIH HHS/ -- R21CA143282/CA/NCI NIH HHS/ -- Z01 HG200337-01/Intramural NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2011 Aug 19;333(6045):1039-43. doi: 10.1126/science.1203619.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, DC 20057, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21852505" target="_blank"〉PubMed〈/a〉
    Keywords: *Aneuploidy ; Antigens, Nuclear/*genetics/*physiology ; Cell Cycle ; Cell Line ; Cell Line, Tumor ; Chromatids/physiology ; *Chromosomal Instability ; Chromosomes, Human, X/genetics ; Female ; Gene Deletion ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; Gene Silencing ; Gene Targeting ; Glioblastoma/*genetics ; Humans ; Karyotyping ; Male ; Melanoma/genetics ; Mutation ; Neoplasms/*genetics ; Polymorphism, Single Nucleotide ; Sarcoma, Ewing/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...