ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2023-08-02
    Description: Predicting the onset, style and duration of explosive volcanic eruptions remains a great challenge. While the fundamental underlying processes are thought to be known, a clear correlation between eruptive features observable above Earth’s surface and conditions and properties in the immediate subsurface is far from complete. Furthermore, the highly dynamic nature and inaccessibility of explosive events means that progress in the field investigation of such events remains slow. Scaled experimental investigations represent an opportunity to study individual volcanic processes separately and, despite their highly dynamic nature, to quantify them systematically. Here, impulsively generated vertical gas-particle jets were generated using rapid decompression shock-tube experiments. The angular deviation from the vertical, defined as the “spreading angle”, has been quantified for gas and particles on both sides of the jets at different time steps using high-speed video analysis. The experimental variables investigated are 1) vent geometry, 2) tube length, 3) particle load, 4) particle size, and 5) temperature. Immediately prior to the first above-vent observations, gas expansion accommodates the initial gas overpressure. All experimental jets inevitably start with a particle-free gas phase (gas-only), which is typically clearly visible due to expansion-induced cooling and condensation. We record that the gas spreading angle is directly influenced by 1) vent geometry and 2) the duration of the initial gas-only phase. After some delay, whose length depends on the experimental conditions, the jet incorporates particles becoming a gas-particle jet. Below we quantify how our experimental conditions affect the temporal evolution of these two phases (gas-only and gas-particle) of each jet. As expected, the gas spreading angle is always at least as large as the particle spreading angle. The latter is positively correlated with particle load and negatively correlated with particle size. Such empirical experimentally derived relationships between the observable features of the gas-particle jets and known initial conditions can serve as input for the parameterisation of equivalent observations at active volcanoes, alleviating the circumstances where an a priori knowledge of magma textures and ascent rate, temperature and gas overpressure and/or the geometry of the shallow plumbing system is typically chronically lacking. The generation of experimental parameterisations raises the possibility that detailed field investigations on gas-particle jets at frequently erupting volcanoes might be used for elucidating subsurface parameters and their temporal variability, with all the implications that may have for better defining hazard assessment.
    Description: Seventh Framework Programme http://dx.doi.org/10.13039/501100004963
    Description: Deutsche Forschungsgemeinschaft
    Description: European Research Council http://dx.doi.org/10.13039/501100000781
    Description: https://doi.org/10.5880/fidgeo.2020.030
    Keywords: ddc:550.78 ; Explosive volcanism, ; Experimental volcanology, ; Spreading angle, ; Shock-tube
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-22
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Heat flow is estimated at eight sites drilled int the Guaymas Basin, Gulf of California, during the International Ocean Discovery Program Expedition 385. The expedition sought to understand the thermal regime of the basin and heat transfer between off‐axis sills intruding the organic‐rich sediments of the Guaymas Basin, and the basin floor. The distinct sedimentation rates, active tectonics, and magmatism make the basin interesting for scientific discoveries. Results show that sedimentation corrected heat flow values range 119–221 mW/m〈sup〉2〈/sup〉 in the basin and 257–1003 mW/m〈sup〉2〈/sup〉 at the site of a young sill intrusion, denominated Ringvent. Thermal analysis shows that heat in the Guaymas Basin is being dissipated by conduction for plate ages >0.2 Ma, whereas younger plate ages are in a state of transient cooling by both conduction and advection. Drilling sites show that Ringvent is an active sill being cooled down slowly by circulating fluids with discharge velocities of 10–200 mm/yr. Possible recharge sites are located ca. 1 km away from the sill's border. Modelling of the heat output at Ringvent indicates a sill thickness of ca. 240 m. A simple order‐of‐magnitude model predicts that relatively small amounts of magma are needed to account for the elevated heat flow in non‐volcanic, sediment‐filled rifts like the central and northern Gulf of California in which heating of the upper crust is achieved via advection by sill emplacement and hydrothermal circulation. Multiple timescales of cooling control the crustal, chemical and biological evolution of the Guaymas Basin. Here, we recognize at least four timescales: the time interval between intrusions (ca. 10〈sup〉3〈/sup〉 yr), the thermal relaxation time of sills (ca. 10〈sup〉4〈/sup〉 yr), the characteristic cooling time of the sediments (ca. 10〈sup〉5〈/sup〉 yr), and the cooling of the entire crust at geologic timescales.〈/p〉
    Description: Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California http://dx.doi.org/10.13039/501100003089
    Description: German Research Center for Geosciences
    Description: https://web.iodp.tamu.edu/LORE/
    Description: https://mlp.ldeo.columbia.edu/logdb/scientific_ocean_drilling/
    Keywords: ddc:551.1 ; Guyamas Basin ; Heat Flow ; Heat Transfer ; IODP Expedition 385
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-06-03
    Description: Few studies have used empirical evidence of past adaptation to project temperature-related excess mortality under climate change. Here, we assess adaptation in future projections of temperature-related excess mortality by employing evidence of shifting minimum mortality temperatures (MMTs) concurrent with climate warming of recent decades. The study is based on daily non-external mortality and daily mean temperature time-series from 11 Spanish cities covering four decades (1978–2017). It employs distributed lag non-linear models (DLNMs) to describe temperature-mortality associations, and multivariate mixed-effect meta-regression models to derive city- and subperiod-specific MMTs, and subsequently MMT associations with climatic indicators. We use temperature projections for one low- and one high-emission scenario (ssp126, ssp370) derived from five global climate models. Our results show that MMTs have closely tracked mean summer temperatures (MSTs) over time and space, with meta-regression models suggesting that the MMTs increased by 0.73 °C (95%CI: 0.65, 0.80) per 1 °C rise in MST over time, and by 0.84 °C (95%CI: 0.76, 0.92) per 1 °C rise in MST across cities. Future projections, which include adaptation by shifting MMTs according to observed temporal changes, result in 63.5% (95%CI: 50.0, 81.2) lower heat-related excess mortality, 63.7% (95%CI: 30.2, 166.7) higher cold-related excess mortality, and 11.2% (95%CI: −5.5, 39.5) lower total temperature-related excess mortality in the 2090s for ssp370 compared to estimates that do not account for adaptation. For ssp126, assumptions on adaptation have a comparatively small impact on excess mortality estimates. Elucidating the adaptive capacities of societies can motivate strengthened efforts to implement specific adaptation measures directed at reducing heat stress under climate change.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-05-16
    Description: The achievement of several sustainable development goals and the Paris Climate Agreement depends on rapid progress towards sustainable food and land systems in all countries. We have built a flexible, collaborative modeling framework to foster the development of national pathways by local research teams and their integration up to global scale. Local researchers independently customize national models to explore mid-century pathways of the food and land use system transformation in collaboration with stakeholders. An online platform connects the national models, iteratively balances global exports and imports, and aggregates results to the global level. Our results show that actions toward greater sustainability in countries could sum up to 1 Mha net forest gain per year, 950 Mha net gain in the land where natural processes predominate, and an increased CO2 sink of 3.7 GtCO2e yr−1 over the period 2020–2050 compared to current trends, while average food consumption per capita remains above the adequate food requirements in all countries. We show examples of how the global linkage impacts national results and how different assumptions in national pathways impact global results. This modeling setup acknowledges the broad heterogeneity of socio-ecological contexts and the fact that people who live in these different contexts should be empowered to design the future they want. But it also demonstrates to local decision-makers the interconnectedness of our food and land use system and the urgent need for more collaboration to converge local and global priorities.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-07-26
    Description: The 2018–2019 Central European drought was probably the most extreme in Germany since the early 16th century. We assess the multiple consequences of the drought for natural systems, the economy and human health in the German part of the Elbe River basin, an area of 97,175 km² including the cities of Berlin and Hamburg and contributing about 18 % to the German GDP. We employ meteorological, hydrological, and socio-economic data to build a comprehensive picture of the drought severity, its multiple effects and cross-sectoral consequences in the basin. Time series of different drought indices illustrate the severity of the 2018–2019 drought and how it progressed from meteorological water deficits via soil water depletion towards low groundwater levels and river runoff, and losses in vegetation productivity. The event resulted in severe production losses in agriculture (minus 20–40 % for staple crops) and forestry (especially through forced logging of damaged wood: 25.1 million tons in 2018–2020 compared to only 3.4 million tons in 2015–2017), while other economic sectors remained largely unaffected. However, there is no guarantee that this socio-economic stability will be sustained in future drought events; this is discussed in the light of 2022, another dry year holding the potential for a compound crisis. Given the increased probability for more intense and long-lasting droughts in most parts of Europe, this example of actual cross-sectoral drought impacts will be relevant for drought awareness and preparation planning in other regions.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-11-23
    Description: There is an urgent need for countries to transition their national food and land-use systems toward food and nutritional security, climate stability, and environmental integrity. How can countries satisfy their demands while jointly delivering the required transformative change to achieve global sustainability targets? Here we present a collaborative approach developed with the FABLE -Food, Agriculture, Biodiversity, Land, and bioEnergy- Consortium to reconcile both global and national elements for developing national food and land use system pathways. This approach includes three key features: (1) global targets, (2) country-driven multi-objective pathways, and (3) multiple iterations of pathway refinement informed by both national and international impacts. This approach strengthens policy coherence and highlights where greater national and international ambition is needed to achieve global goals (e.g. the SDGs). We discuss how this could be used to support future climate and biodiversity negotiations and what further developments would be needed.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-01-24
    Description: This paper analyzes the influence of the interannual variability of climatic drought on ecological and hydrological droughts for a basin in the central Spanish Pyrenees using variables derived from observations and hydro-ecological simulation in order to determine the possible connection between meteorological, ecological and hydrological drought considering a cascading approach and encompassing different variables that give insights into water availability in the basin (e.g., soil moisture, streamflow, reservoir storages and releases). Using different climatic, ecological and hydrological standardized drought indices, we show the greater role of meteorological droughts in hydrological systems than in ecological systems, and the small influence of vegetation activity and growth in explaining the interannual variability of water resources in the basin. By contrast,hydrological droughts are strongly affected by precipitation variability with relationships characterized by seasonal differences and the role of different time-scales in the standardized drought metrics.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-13
    Description: Accurate and reliable precipitation data with high spatial and temporal resolution are essential in studying climate variability, water resources management, and hydrological forecasting. A range of global precipitation data are available to this end, but how well these capture actual precipitation remains unknown, particularly for mountain regions where ground stations are sparse. We examined the performance of three global high‐resolution precipitation products for capturing precipitation over Central Asia, a hotspot of climate change, where reliable precipitation data are particularly scarce. Specifically, we evaluated MSWEP, CHIRPS, and GSMAP against independent gauging stations for the period 1985–2015. Our results show that MSWEP and CHIRPS outperformed GSMAP for wetter periods (i.e., winter and spring) and wetter locations (150–600 mm·year−1), lowlands, and mid‐altitudes (0–3,000 m), and regions dominated by winter and spring precipitation. MSWEP performed best in representing temporal precipitation dynamics and CHIRPS excelled in capturing the volume and distribution of precipitation. All precipitation products poorly estimated precipitation at higher elevations (〉3,000 m), in drier areas (〈150 mm), and in regions characterized by summer precipitation. All products accurately detected dry spells, but their performance decreased for wet spells with increasing precipitation intensity. In sum, we find that CHIRPS and MSWEP provide the most reliable high‐resolution precipitation estimates for Central Asia. However, the high spatial and temporal heterogeneity of the performance call for a careful selection of a suitable product for local applications considering the prevailing precipitation dynamics, climatic, and topographic conditions.
    Description: We present the first quantitative evaluation of global high‐resolution (below 12 km) precipitation products against independent ground observations over Central Asia. Our results show that MSWEP was best at representing temporal precipitation dynamics, and CHIRPS was most prominent in representing the volume and distribution of precipitation. This is especially the case of wet seasons, altitudes below 3,000 m, and regions dominated by spring and winter precipitation. Our analysis provides key insights on the precipitation products' suitability for local hydrological applications.
    Description: Leibniz‐Institut für Agrarentwicklung in Transformationsökonomien
    Description: Volkswagen Foundation http://dx.doi.org/10.13039/501100001663
    Keywords: ddc:551.6
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-09-29
    Description: Megathrust earthquakes impose changes of differential stress and pore pressure in the lithosphere‐asthenosphere system that are transiently relaxed during the postseismic period primarily due to afterslip, viscoelastic and poroelastic processes. Especially during the early postseismic phase, however, the relative contribution of these processes to the observed surface deformation is unclear. To investigate this, we use geodetic data collected in the first 48 days following the 2010 Maule earthquake and a poro‐viscoelastic forward model combined with an afterslip inversion. This model approach fits the geodetic data 14% better than a pure elastic model. Particularly near the region of maximum coseismic slip, the predicted surface poroelastic uplift pattern explains well the observations. If poroelasticity is neglected, the spatial afterslip distribution is locally altered by up to ±40%. Moreover, we find that shallow crustal aftershocks mostly occur in regions of increased postseismic pore‐pressure changes, indicating that both processes might be mechanically coupled.
    Description: Plain Language Summary: Large earthquakes modify the state of stress and pore pressure in the upper crust and mantle. These changes induce stress relaxation processes and pore pressure diffusion in the postseismic phase. The two main stress relaxation processes are postseismic slip along the rupture plane of the earthquake and viscoelastic deformation in the rock volume. These processes decay with time, but can sustain over several years or decades, respectively. The other process that results in volumetric crustal deformation is poroelasticity due to pore pressure diffusion, which has not been investigated in detail. Using postseismic surface displacement data acquired by radar satellites after the 2010 Maule earthquake, we show that poroelastic deformation may considerably affect the vertical component of the observed geodetic signal during the first months. Poroelastic deformation also has an impact on the estimation of the postseismic slip, which in turn affects the energy stored at the fault plane that is available for the next event. In addition, shallow aftershocks within the continental crust show a good, positive spatial correlation with regions of increased postseismic pore‐pressure changes, suggesting they are linked. These findings are thus important to assess the potential seismic hazard of the segment.
    Description: Key Points: A poro‐viscoelastic deformation model improves the geodetic data misfit by 14% compared to an elastic model that only accounts for afterslip. Poroelastic deformation mainly produces surface uplift and landward displacement patterns on the coastal forearc region. Neglecting poroelastic effects may locally alter the afterslip amplitude by up to ±40% near the region of maximum coseismic slip.
    Description: Helmholtz Association (亥姆霍兹联合会致力) http://dx.doi.org/10.13039/501100009318
    Keywords: ddc:551
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...