ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (102)
  • CITATION GEO-LEO  (102)
Collection
  • Other Sources  (102)
Language
  • 1
    Publication Date: 2023-06-08
    Description: Geochronology of ultra-high-pressure metamorphic rocks is able to constrain the timing and rates of subduction-zone processes. Lu–Hf garnet dating has the potential to yield information about the timing of the prograde evolution of subducting rocks under increasing pressure. In combination with other methods, it thus allows constraining the complete P–T–t path with high precision. Ultra-high-pressure eclogites from the Tromsø Nappe, the structurally highest tectonic unit of the Scandinavian Caledonides in northern Norway, were dated using Lu–Hf geochronology on garnet. A sample from Tromsdalstind yielded an age of 448.3 ± 3.6 Ma, interpreted as dating prograde garnet growth due to preserved zoning in the major-element and Lu contents of garnet grains. A sample from the diamond-bearing locality Tønsvika yielded an identical age of 449.4 ± 3.3 Ma. Garnet from this sample shows a weak zoning in Ca content and near-homogeneous Lu content. These ages are identical within error among each other and with published U–Pb ages of peak-eclogite-facies zircon and rutile/titanite from exhumation-related leucosome veins. Consequently, the entire subduction–exhumation cycle leading to the ultra-high-pressure eclogites lasted only very few millions of years during the Late Ordovician.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Agentúra na Podporu Výskumu a Vývoja (SK)
    Keywords: ddc:552.4 ; Lu–Hf geochronology ; UHP metamorphism ; Garnet ; Scandinavian Caledonides ; Tromsø Nappe
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-06
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The drag coefficient, Stanton number and Dalton number are of particular importance for estimating the surface turbulent fluxes of momentum, heat and water vapor using bulk parameterization. Although these bulk transfer coefficients have been extensively studied over the past several decades in marine and large‐lake environments, there are no studies analyzing their variability for smaller lakes. Here, we evaluated these coefficients through directly measured surface fluxes using the eddy‐covariance technique over more than 30 lakes and reservoirs of different sizes and depths. Our analysis showed that the transfer coefficients (adjusted to neutral atmospheric stability) were generally within the range reported in previous studies for large lakes and oceans. All transfer coefficients exhibit a substantial increase at low wind speeds (〈3 m s〈sup〉−1〈/sup〉), which was found to be associated with the presence of gusts and capillary waves (except Dalton number). Stanton number was found to be on average a factor of 1.3 higher than Dalton number, likely affecting the Bowen ratio method. At high wind speeds, the transfer coefficients remained relatively constant at values of 1.6·10〈sup〉−3〈/sup〉, 1.4·10〈sup〉−3〈/sup〉, 1.0·10〈sup〉−3〈/sup〉, respectively. We found that the variability of the transfer coefficients among the lakes could be associated with lake surface area. In flux parameterizations at lake surfaces, it is recommended to consider variations in the drag coefficient and Stanton number due to wind gustiness and capillary wave roughness while Dalton number could be considered as constant at all wind speeds.〈/p〉
    Description: Plain Language Summary: In our study, we investigate the bulk transfer coefficients, which are of particular importance for estimation the turbulent fluxes of momentum, heat and water vapor in the atmospheric surface layer, above lakes and reservoirs. The incorrect representation of the surface fluxes above inland waters can potentially lead to errors in weather and climate prediction models. For the first time we made this synthesis using a compiled data set consisting of existing eddy‐covariance flux measurements over 23 lakes and 8 reservoirs. Our results revealed substantial increase of the transfer coefficients at low wind speeds, which is often not taken into account in models. The observed increase in the drag coefficient (momentum transfer coefficient) and Stanton number (heat transfer coefficient) could be associated with the presence of wind gusts and capillary waves. In flux parameterizations at lake surface, it is recommended to consider them for accurate flux representation. Although the bulk transfer coefficients were relatively constant at high wind speeds, we found that the Stanton number systematically exceeds the Dalton number (water vapor transfer coefficient), despite the fact they are typically considered to be equal. This difference may affect the Bowen ratio method and result in biased estimates of lake evaporation.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Bulk transfer coefficients exhibit a substantial increase at low wind speed〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The increase is explained by wind gustiness and capillary wave roughness〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉At higher wind speed, drag coefficient and Stanton number decrease with lake surface area〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: SHESF, Sao Francisco Hydroelectric Company
    Description: DOE Ameriflux Network Management Project
    Description: NSF North Temperate Lakes LTER
    Description: U.S. Department of Energy Office of Science
    Description: Japan Society for the Promotion of Science KAKENHI
    Description: Swedish Research Council
    Description: ÚNKP‐21‐3 New National Excellence Program of the Ministry for Innovation and Technology, Hungary
    Description: Russian Science Foundation http://dx.doi.org/10.13039/501100006769
    Description: Helmholtz Young Investigators Grant
    Description: Helmholtz Association of German Research Centers
    Description: Austrian Academy of Sciences
    Description: Autonome Provinz Bozen‐Südtirol
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Russian Ministry of Science and Higher Education
    Description: National Research, Development and Innovation Office
    Description: ICOS‐Finland, University of Helsinki
    Description: https://doi.org/10.5281/zenodo.6597828
    Keywords: ddc:551.5 ; bulk transfer coefficients ; eddy‐covariance ; lakes ; reservoirs
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-13
    Description: The PERCIVAL detector is a CMOS imager designed for the soft X‐ray regime at photon sources. Although still in its final development phase, it has recently seen its first user experiments: ptychography at a free‐electron laser, holographic imaging at a storage ring and preliminary tests on X‐ray photon correlation spectroscopy. The detector performed remarkably well in terms of spatial resolution achievable in the sample plane, owing to its small pixel size, large active area and very large dynamic range; but also in terms of its frame rate, which is significantly faster than traditional CCDs. In particular, it is the combination of these features which makes PERCIVAL an attractive option for soft X‐ray science.
    Keywords: ddc:548 ; X‐ray detectors ; soft X‐rays ; ptychography ; holographic imaging ; XPCS ; detectors
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-11-18
    Description: Atomic oxygen is a main component of the mesosphere and lower thermosphere of the Earth, where it governs photochemistry and energy balance and is a tracer for dynamical motions. However, its concentration is extremely difficult to measure with remote sensing techniques since atomic oxygen has few optically active transitions. Current indirect methods involve photochemical models and the results are not always in agreement, particularly when obtained with different instruments. Here we present direct measurements—independent of photochemical models—of the ground state 〈sup〉3〈/sup〉P〈sub〉1〈/sub〉 →〈sup〉3〈/sup〉 P〈sub〉2〈/sub〉 fine-structure transition of atomic oxygen at 4.7448 THz using the German Receiver for Astronomy at Terahertz Frequencies (GREAT) on board the Stratospheric Observatory for Infrared Astronomy (SOFIA). We find that our measure ments of the concentration of atomic oxygen agree well with atmospheric models informed by satellite observations. We suggest that this direct observation method may be more accurate than existing indirect methods that rely on photochemical models.
    Description: Atomic oxygen concentrations in the upper atmosphere can be measured directly with an airborne terahertz heterodyne spectrometer. This approach is probably more accurate than indirect estimates from photochemical models, according to a comparison of the two methods.
    Description: German Federal Ministry of Research and Education grant number 50 OK 1104
    Description: https://irsa.ipac.caltech.edu/applications/sofia/?__action=layout.showDropDown&visible=true&view=Search
    Description: ftp://saber.gats-inc.com/Version2_0/SABER_atox_Panka_etal_2018_GRL/SABER_o3p_oh_night_2015_v1.0.nc
    Description: https://atran.arc.nasa.gov/cgi-bin/atran/atran.cgi
    Description: https://ccmc.gsfc.nasa.gov/modelweb/models/nrlmsise00.php
    Keywords: ddc:550.724 ; Astronomical instrumentation ; Atmospheric chemistry ; Planetary science ; mesosphere ; lower thermosphere ; atomic oxygen measurement
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-07-04
    Description: The northeastern Lau Basin is one of the fastest opening and magmatically most active back‐arc regions on Earth. Although the current pattern of plate boundaries and motions in this complex mosaic of microplates is reasonably understood, the internal structure and evolution of the back‐arc crust are not. We present new geophysical data from a 290 km long east‐west oriented transect crossing the Niuafo'ou Microplate (back‐arc), the Fonualei Rift and Spreading Center (FRSC) and the Tofua Volcanic Arc at 17°20′S. Our P wave tomography model and density modeling suggest that past crustal accretion inside the southern FRSC was accommodated by a combination of arc crustal extension and magmatic activity. The absence of magnetic reversals inside the FRSC supports this and suggests that focused seafloor spreading has until now not contributed to crustal accretion. The back‐arc crust constituting the southern Niuafo'ou Microplate reveals a heterogeneous structure comprising several crustal blocks. Some regions of the back‐arc show a crustal structure similar to typical oceanic crust, suggesting they originate from seafloor spreading. Other crustal blocks resemble a structure that is similar to volcanic arc crust or a “hydrous” type of oceanic crust that has been created at a spreading center influenced by slab‐derived water at distances 〈50 km to the arc. Throughout the back‐arc region, we observe a high‐velocity (Vp 7.2–7.5 km s−1) lower crust, which is an indication for magmatic underplating, which is likely sustained by elevated upper mantle temperatures in this region.
    Description: Key Points: First insights into the crustal structure of the northeastern Lau Basin, along a 290 km transect at 17°20′S. Crust in southern Fonualei Rift and Spreading Center was created by extension of arc crust and variable amount of magmatism. Magmatic underplating is present in some parts of the southern Niuafo'ou Microplate.
    Description: Bundesministerium für Bildung und Forschung (BMBF) http://dx.doi.org/10.13039/501100002347
    Keywords: 551.8 ; Lau Basin ; back‐arc basin
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-03-29
    Description: Snow in the environment acts as a host to rich chemistry and provides a matrix for physical exchange of contaminants within the ecosystem. The goal of this review is to summarise the current state of knowledge of physical processes and chemical reactivity in surface snow with relevance to polar regions. It focuses on a description of impurities in distinct compartments present in surface snow, such as snow crystals, grain boundaries, crystal surfaces, and liquid parts. It emphasises the microscopic description of the ice surface and its link with the environment. Distinct differences between the disordered air–ice interface, often termed quasi-liquid layer, and a liquid phase are highlighted. The reactivity in these different compartments of surface snow is discussed using many experimental studies, simulations, and selected snow models from the molecular to the macro-scale. Although new experimental techniques have extended our knowledge of the surface properties of ice and their impact on some single reactions and processes, others occurring on, at or within snow grains remain unquantified. The presence of liquid or liquid-like compartments either due to the formation of brine or disorder at surfaces of snow crystals below the freezing point may strongly modify reaction rates. Therefore, future experiments should include a detailed characterisation of the surface properties of the ice matrices. A further point that remains largely unresolved is the distribution of impurities between the different domains of the condensed phase inside the snowpack, i.e. in the bulk solid, in liquid at the surface or trapped in confined pockets within or between grains, or at the surface. While surface-sensitive laboratory techniques may in the future help to resolve this point for equilibrium conditions, additional uncertainty for the environmental snowpack may be caused by the highly dynamic nature of the snowpack due to the fast metamorphism occurring under certain environmental conditions. Due to these gaps in knowledge the first snow chemistry models have attempted to reproduce certain processes like the long-term incorporation of volatile compounds in snow and firn or the release of reactive species from the snowpack. Although so far none of the models offers a coupled approach of physical and chemical processes or a detailed representation of the different compartments, they have successfully been used to reproduce some field experiments. A fully coupled snow chemistry and physics model remains to be developed.
    Keywords: air, ice, liquids, quasi-liquids, solids; snow ; 551
    Language: English
    Type: article , publishedVersion
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-11-23
    Description: Offshore meteoric groundwater (OMG) has long been hypothesized to be a driver of seafloor geomorphic processes in continental margins worldwide. Testing this hypothesis has been challenging because of our limited understanding of the distribution and rate of OMG flow and seepage, and their efficacy as erosive/destabilizing agents. Here we carry out numerical simulations of groundwater flow and slope stability using conceptual models and evolving stratigraphy—for passive siliciclastic and carbonate margin cases—to assess whether OMG and its evolution during a late Quaternary glacial cycle can generate the pore pressures required to trigger mechanical instabilities on the seafloor. Conceptual model results show that mechanical instabilities using OMG flow are most likely to occur in the outer shelf to upper slope, at or shortly before the Last Glacial Maximum sea‐level lowstand. Models with evolving stratigraphy show that OMG flow is a key driver of pore pressure development and instability in the carbonate margin case. In the siliciclastic margin case, OMG flow plays a secondary role in preconditioning the slope to failure. The higher degree of spatial/stratigraphic heterogeneity of carbonate margins, lower shear strengths of their sediments, and limited generation of overpressures by sediment loading may explain the higher susceptibility of carbonate margins, in comparison to siliciclastic margins, to mechanical instability by OMG flow. OMG likely played a more significant role in carbonate margin geomorphology (e.g., Bahamas, Maldives) than currently thought.
    Description: Plain Language Summary: The flow of fresh to brackish groundwater has been proposed as an important process shaping the seafloor. However, we still have a poor understanding of how groundwater behaves in the sub‐seafloor and whether it can erode seafloor sediments. In this study, we test this hypothesis by using conceptual and realistic numerical models of two common types of seafloor margins—siliciclastic and carbonate—to assess the role of groundwater in making the seafloor susceptible to erosion. We show that the flow of groundwater offshore could have driven seafloor erosion close to the shelf break during the Last Ice Age, when sea level was lower than at present. Carbonate margins are more susceptible to this type of failure than siliciclastic margins. This may be explained by the higher variability in sediment properties across carbonate margins as well as the lower strength of their sediments. Groundwater has likely played an important role in shaping the seafloor in carbonate margins, and it may be responsible for landforms such as canyons, scars, and depressions in the Bahamas and the Maldives.
    Description: Key Points: Offshore meteoric groundwater (OMG) flow can drive mechanical instabilities in the outer shelf to upper slope. Such instabilities occur at, or shortly after, the Last Glacial Maximum sea‐level lowstand. Carbonate margins are more susceptible to mechanical instability by OMG than siliciclastic margins.
    Description: European Research Council http://dx.doi.org/10.13039/501100000781
    Description: National Science Foundation http://dx.doi.org/10.13039/100000001
    Description: https://doi.org/10.5281/zenodo.7094202
    Description: https://www.rocscience.com/software/slide2
    Description: https://figshare.com/s/5336d42d19ef771d4ad8
    Description: https://figshare.com/s/5027cd5ca22a7e96b3d1
    Keywords: ddc:551.3 ; offshore groundwater ; mechanical instability ; continental margins ; seafloor geomorphology ; siliciclastic ; carbonate
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-11-23
    Description: The earthworm Eisenia fetida is a commonly used model organism for unspecific soil feeders in ecotoxicological studies. Its intestinal cells are the first to encounter possible pollutants co-ingested by the earthworm, which makes them prime candidates for studies of toxic effects of environmental pollutants on the cellular as compared to the organismic level. In this context, the aim of this study was to demonstrate the suitability of preparations of primary intestinal E. fetida cells for in vitro ecotoxicological studies. For this purpose, a suitable isolation and cultivation protocol was established. Cells were isolated directly from the intestine, maintaining 〉85% viability during subsequent cultivations (up to 144 h). Exposure to established pollutants and soil elutriates comprising silver nanoparticles and metal ions (Cu2+, Cd2+) induced a significant decrease in the metabolic activity of the cells. In case of microplastic particles (MP particles), namely 0.2, 0.5, 2.0, and 3.0 µm diameter polystyrene (PS) beads as well as 0.5 and 2.0 µm diameter polylactic acid (PLA) beads, no active uptake was observed. Slight positive as well as negative dose and size dependent effects on the metabolism were seen, which to some extent might correlate with effects on the organismic level.
    Keywords: ddc:631.4 ; Earthworm ; Eisenia fetida ; Environmental pollutants ; Microplastic ; Cytotoxicity ; Primary cells
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-10-26
    Description: Ocean turbulent mixing is a key process affecting the uptake and redistribution of heat, carbon, nutrients, oxygen and other dissolved gasses. Vertical turbulent diffusivity sets the rates of water mass transformations and ocean mixing, and is intrinsically an average quantity over process time scales. Estimates based on microstructure profiling, however, are typically obtained as averages over individual profiles. How representative such averaged diffusivities are, remains unexplored in the quiescent Arctic Ocean. Here, we compare upper ocean vertical diffusivities in winter, derived from the 7Be tracer‐based approach to those estimated from direct turbulence measurements during the year‐long Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition, 2019–2020. We found that diffusivity estimates from both methods agree within their respective measurement uncertainties. Diffusivity estimates obtained from dissipation rate profiles are sensitive to the averaging method applied, and the processing and analysis of similar data sets must take this sensitivity into account. Our findings indicate low characteristic diffusivities around 10〈sup〉−6〈/sup〉 m〈sup〉2〈/sup〉 s〈sup〉−1〈/sup〉 and correspondingly low vertical heat fluxes.
    Description: Plain Language Summary: Ocean turbulent mixing plays an important role in the uptake and redistribution of heat, carbon, nutrients, oxygen and other properties. For example, this process delivers nutrients to the sunlit surface ocean where they are utilized to produce plants (phytoplankton) for the ecosystem food web. However, strong changes in density within the upper Arctic Ocean hinder vertical transport of nutrients, such that nutrient fluxes are generally smaller than those observed elsewhere in the world ocean. Furthermore, low vertical transport rates isolate the surface ocean from heat input from below which helps protect the ice from melting. Here, we compare the strength of upper ocean mixing, an important parameter for the calculation of vertical transport, derived from two independent methods during the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) ice drift experiment, 2019–2020. This comparison allows us to better quantify the vertical diffusivity, and in turn also the vertical transport of for example, heat and nutrients in the ocean.
    Description: Key Points: Arctic Ocean vertical diffusivity (K〈sub〉z〈/sub〉) in the upper halocline in winter is O(10〈sup〉−6〈/sup〉) m〈sup〉2〈/sup〉 s〈sup〉−1〈/sup〉. Diffusivity estimates from 〈sup〉7〈/sup〉Be measurements and ocean microstructure profiling agree within a factor of 2. K〈sub〉z〈/sub〉 estimates from turbulent dissipation rate profiles are sensitive to the averaging method.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Research Council of Norway
    Description: National Science Foundation http://dx.doi.org/10.13039/100000001
    Description: https://doi.org/10.1594/PANGAEA.939816
    Description: https://doi.org/10.26008/1912/bco-dmo.861596.1
    Keywords: ddc:551.46 ; Arctic Ocean ; vertical mixing ; halocline ; winter ; turbulent diffusivity ; microstructure profiling
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-12-14
    Description: Southern Africa, with its vast arid to semiarid areas, is considered vulnerable to precipitation changes and amplifying weather extremes. However, during the last 100 ka, huge lakes existed in the currently dry central Kalahari. It has been suggested that these lakes could have existed due to altered atmospheric circulation pattern, leading to an increase in precipitation or to changes in the annual precipitation distribution. Past climate changes are recorded in paleo‐archives, yet, for a proper interpretation of paleo‐records, for example, from sedimentological archives or fossils, it is essential to put them in a context with recent observations. This study’s objective is, therefore, to analyze spatially differing annual precipitation distributions at multiple locations in southern Africa with respect to their stable water isotope composition, moisture transport pathways, and sources. Five different precipitation distributions are identified by end‐member modeling and respective rainfall zones are inferred, which differ significantly in their isotopic compositions. By calculating backward trajectories, different moisture source regions are identified for the rainfall zones and linked to typical circulation patterns. Our results furthermore show the importance of the seasonality, the amount effect, and the traveled distance of the moisture for the general isotopic composition over the entire southern Africa. The identified pattern and relationships can be useful in the evaluation of isotope‐enabled climate models for the region and are potentially of major importance for the interpretation of stable water isotope composition in paleo‐records in future research.
    Description: Key Points: We identified five different annual precipitation distributions in southern Africa that cluster in space and define rainfall zones. Lagrangian source diagnostic shows that the rainfall zones have notably different moisture sources. The isotopic composition differs significantly between rainfall zones.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://nucleus.iaea.org/wiser
    Description: https://doi.pangaea.de/10.1594/PANGAEA.944811
    Description: https://doi.org/10.24381/cds.bd0915c6
    Description: http://iacweb.ethz.ch/staff/sprenger/lagranto/
    Description: https://forobs.jrc.ec.europa.eu/products/glc2000/products.php
    Description: https://doi.org/10.6084/m9.figshare.7504448.v3
    Description: https://doi.org/10.5066/F7J38R2N
    Description: https://cran.r-project.org/bin/windows/base/old/
    Description: https://cran.r-project.org/web/packages/EMMAgeo/index.html
    Description: https://cran.r-project.org/web/packages/party/index.html
    Keywords: ddc:551.5 ; Lagrangian moisture source diagnostic ; stable water isotopes ; precipitation end‐member ; random forest ; annual rainfall distribution ; moisture pathways
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...