ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books
  • Articles  (88)
  • Open Access-Papers  (88)
Collection
  • Books
  • Articles  (88)
  • 1
    Publication Date: 2018-08-13
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-17
    Description: Clouds play an important role in Arctic amplification. This term represents the recently observed enhanced warming of the Arctic relative to the global increase of near-surface air temperature. However, there are still important knowledge gaps regarding the interplay between Arctic clouds and aerosol particles, and surface properties, as well as turbulent and radiative fluxes that inhibit accurate model simulations of clouds in the Arctic climate system. In an attempt to resolve this so-called Arctic cloud puzzle, two comprehensive and closely coordinated field studies were conducted: the Arctic Cloud Observations Using Airborne Measurements during Polar Day (ACLOUD) aircraft campaign and the Physical Feedbacks of Arctic Boundary Layer, Sea Ice, Cloud and Aerosol (PASCAL) ice breaker expedition. Both observational studies were performed in the framework of the German Arctic Amplification: Climate Relevant Atmospheric and Surface Processes, and Feedback Mechanisms (AC)3 project. They took place in the vicinity of Svalbard, Norway, in May and June 2017. ACLOUD and PASCAL explored four pieces of the Arctic cloud puzzle: cloud properties, aerosol impact on clouds, atmospheric radiation, and turbulent dynamical processes. The two instrumented Polar 5 and Polar 6 aircraft; the icebreaker Research Vessel (R/V) Polarstern; an ice floe camp including an instrumented tethered balloon; and the permanent ground-based measurement station at Ny-Ålesund, Svalbard, were employed to observe Arctic low- and mid-level mixed-phase clouds and to investigate related atmospheric and surface processes. The Polar 5 aircraft served as a remote sensing observatory examining the clouds from above by downward-looking sensors; the Polar 6 aircraft operated as a flying in situ measurement laboratory sampling inside and below the clouds. Most of the collocated Polar 5/6 flights were conducted either above the R/V Polarstern or over the Ny-Ålesund station, both of which monitored the clouds from below using similar but upward-looking remote sensing techniques as the Polar 5 aircraft. Several of the flights were carried out underneath collocated satellite tracks. The paper motivates the scientific objectives of the ACLOUD/PASCAL observations and describes the measured quantities, retrieved parameters, and the applied complementary instrumentation. Furthermore, it discusses selected measurement results and poses critical research questions to be answered in future papers analyzing the data from the two field campaigns.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Alfred Wegener Institute for Polar and Marine Research
    In:  EPIC3Berichte zur Polar- und Meeresforschung = Reports on polar and marine research, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research, 754, 99 p., ISSN: 1866-3192
    Publication Date: 2021-07-05
    Repository Name: EPIC Alfred Wegener Institut
    Type: "Berichte zur Polar- und Meeresforschung" , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Copernicus Publications on behalf of the European Geosciences Union.
    In:  EPIC3Atmos. Chem. Phys.,, Copernicus Publications on behalf of the European Geosciences Union., 20, pp. 8139-8156
    Publication Date: 2020-10-12
    Description: The magnitude of solar radiative effects (cooling or warming) of black carbon (BC) particles embedded in the Arctic atmosphere and surface snow layer was explored on the basis of case studies. For this purpose, combined at- mospheric and snow radiative transfer simulations were per- formed for cloudless and cloudy conditions on the basis of BC mass concentrations measured in pristine early summer and more polluted early spring conditions. The area of inter- est is the remote sea-ice-covered Arctic Ocean in the vicin- ity of Spitsbergen, northern Greenland, and northern Alaska typically not affected by local pollution. To account for the radiative interactions between the black-carbon-containing snow surface layer and the atmosphere, an atmospheric and snow radiative transfer model were coupled iteratively. For pristine summer conditions (no atmospheric BC, minimum solar zenith angles of 55◦) and a representative BC particle mass concentration of 5 ng g−1 in the surface snow layer, a positive daily mean solar radiative forcing of +0.2Wm−2 was calculated for the surface radiative budget. A higher load of atmospheric BC representing early springtime conditions results in a slightly negative mean radiative forcing at the surface of about −0.05 W m−2, even when the low BC mass concentration measured in the pristine early summer condi- tions was embedded in the surface snow layer. The total net surface radiative forcing combining the effects of BC em- bedded in the atmosphere and in the snow layer strongly de- pends on the snow optical properties (snow specific surface area and snow density). For the conditions over the Arctic Ocean analyzed in the simulations, it was found that the at- mospheric heating rate by water vapor or clouds is 1 to 2 or-ders of magnitude larger than that by atmospheric BC. Sim- ilarly, the daily mean total heating rate (6 K d−1) within a snowpack due to absorption by the ice was more than 1 order of magnitude larger than that of atmospheric BC (0.2 K d−1). Also, it was shown that the cooling by atmospheric BC of the near-surface air and the warming effect by BC embedded in snow are reduced in the presence of clouds.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-02-04
    Description: In this study, we present unique data collected with a Surface and Under-Ice Trawl (SUIT) during five campaigns between 2012 and 2017, covering the spring to summer and autumn transition in the Arctic Ocean, and the seasons of winter and summer in the Southern Ocean. The SUIT was equipped with a sensor array from which we retrieved: sea-ice thickness, the light field at the underside of sea ice, chlorophyll a concentration in the ice (in-ice chl a), and the salinity, temperature, and chl a concentration of the under-ice water. With an average trawl distance of about 2 km, and a global transect length of more than 117 km in both polar regions, the present work represents the first multi-seasonal habitat characterization based on kilometer-scale profiles. The present data highlight regional and seasonal patterns in sea-ice properties in the Polar Ocean. Light transmittance through Arctic sea ice reached almost 100 in summer, when the ice was thinner and melt ponds spread over the ice surface. However, the daily integrated amount of light under sea ice was maximum in spring. Compared to the Arctic, Antarctic sea-ice was thinner, snow depth was thicker, and sea-ice properties were more uniform between seasons. Light transmittance was low in winter with maximum transmittance of 73. Despite thicker snow depth, the overall under-ice light was considerably higher during Antarctic summer than during Arctic summer. Spatial autocorrelation analysis shows that Arctic sea ice was characterized by larger floes compared to the Antarctic. In both Polar regions, the patch size of the transmittance followed the spatial variability of sea-ice thickness. In-ice chl a in the Arctic Ocean remained below 0.39 mg chl a m〈sup〉â��2〈/sup〉, whereas it exceeded 7 mg chl a m〈sup〉â��2〈/sup〉 during Antarctic winter, when water chl a concentrations remained below 1.5 mg chl a m〈sup〉â��2〈/sup〉, thus highlighting its potential as an important carbon source for overwintering organisms. The data analyzed in this study can improve large-scale physical and ecosystem models, habitat mapping studies and time series analyzed in the context of climate change effects and marine management.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-05-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-09-14
    Description: The concept of cloud radiative forcing (CRF)is commonly applied to quantify the impact of clouds onthe surface radiative energy budget (REB). In the Arctic,specific radiative interactions between microphysical andmacrophysical properties of clouds and the surface stronglymodify the warming or cooling effect of clouds, complicat-ing the estimate of CRF obtained from observations or mod-els. Clouds tend to increase the broadband surface albedoover snow or sea ice surfaces compared to cloud-free con-ditions. However, this effect is not adequately consideredin the derivation of CRF in the Arctic so far. Therefore,we have quantified the effects caused by surface-albedo–cloud interactions over highly reflective snow or sea ice sur-faces on the CRF using radiative transfer simulations andbelow-cloud airborne observations above the heterogeneousspringtime marginal sea ice zone (MIZ) during the ArcticCLoud Observations Using airborne measurements duringpolar Day (ACLOUD) campaign. The impact of a modi-fied surface albedo in the presence of clouds, as comparedto cloud-free conditions, and its dependence on cloud opti-cal thickness is found to be relevant for the estimation of theshortwave CRF. A method is proposed to consider this sur-face albedo effect on CRF estimates by continuously retriev-ing the cloud-free surface albedo from observations undercloudy conditions, using an available snow and ice albedoparameterization. Using ACLOUD data reveals that the esti-mated average shortwave cooling by clouds almost doublesover snow- and ice-covered surfaces (−62 W m−2instead of−32 W m−2), if surface-albedo–cloud interactions are con-sidered. As a result, the observed total (shortwave plus long-wave) CRF shifted from a warming effect to an almost neu-tral one. Concerning the seasonal cycle of the surface albedo, it is demonstrated that this effect enhances shortwave cool-ing in periods when snow dominates the surface and poten-tially weakens the cooling by optically thin clouds duringthe summertime melting season. These findings suggest thatthe surface-albedo–cloud interaction should be considered inglobal climate models and in long-term studies to obtain arealistic estimate of the shortwave CRF to quantify the roleof clouds in Arctic amplification.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-11-16
    Description: The surface reflection of solar radiation comprises an important boundary condition for solar radiative transfer simulations. In polar regions above snow surfaces, the surface reflection is particularly anisotropic due to low Sun elevations and the highly anisotropic scattering phase function of the snow crystals. The characterization of this surface reflection anisotropy is essential for satellite remote sensing over both the Arctic and Antarctica. To quantify the angular snow reflection properties, the hemispherical-directional reflectance factor (HDRF) of snow surfaces was derived from airborne measurements in Antarctica during austral summer in 2013/14. For this purpose, a digital 180∘ fish-eye camera (green channel, 490–585 nm wavelength band) was used. The HDRF was measured for different surface roughness conditions, optical-equivalent snow grain sizes, and solar zenith angles. The airborne observations covered an area of around 1000 km × 1000 km in the vicinity of Kohnen Station (75∘0′ S, 0∘4′ E) at the outer part of the East Antarctic Plateau. The observations include regions with higher (coastal areas) and lower (inner Antarctica) precipitation amounts and frequencies. The digital camera provided upward, angular-dependent radiance measurements from the lower hemisphere. The comparison of the measured HDRF derived for smooth and rough snow surfaces (sastrugi) showed significant differences, which are superimposed on the diurnal cycle. By inverting a semi-empirical kernel-driven bidirectional reflectance distribution function (BRDF) model, the measured HDRF of snow surfaces was parameterized as a function of solar zenith angle, surface roughness, and optical-equivalent snow grain size. This allows a direct comparison of the HDRF measurements with the BRDF derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite product MCD43. For the analyzed cases, MODIS observations (545–565 nm wavelength band) generally underestimated the anisotropy of the surface reflection. The largest deviations were found for the volumetric model weight fvol (average underestimation by a factor of 10). These deviations are likely linked to short-term changes in snow properties.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-05-27
    Description: The synergy between airborne lidar, radar, passive microwave, and passive imaging spectrometer measurements was used to characterize the vertical and small-scale (down to 10 m) horizontal distribution of the cloud thermodynamic phase. Two case studies of low-level Arctic clouds in a cold air outbreak and a warm air advection observed during the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) were investigated. Both clouds exhibited the typical vertical mixed-phase structure with mostly liquid water droplets at cloud top and ice crystals in lower layers. The cloud top horizontal small-scale variability observed during the cold air outbreak is dominated by the liquid water close to the cloud top and shows no indication of ice in lower cloud layers. Contrastingly, the cloud top variability of the case observed during a warm air advection showed some ice in areas of low reflectivity or cloud holes. Radiative transfer simulations considering homogeneous mixtures of liquid water droplets and ice crystals were able to reproduce the horizontal variability of this warm air advection. To account for more realistic vertical distributions of the thermodynamic phase, large eddy simulations (LES) were performed to reconstruct the observed cloud properties and were used as input for radiative transfer simulations. The simulations of the cloud observed during the cold air outbreak, with mostly liquid water at cloud top, realistically reproduced the observations. For the warm air advection case, the simulated cloud field underestimated the ice water content (IWC). Nevertheless, it revealed the presence of ice particles close to the cloud top and confirmed the observed horizontal variability of the cloud field. It is concluded that the cloud top small-scale horizontal variability reacts to changes in the vertical distribution of the cloud thermodynamic phase. Passive satellite-borne imaging spectrometer observations with pixel sizes larger than 100 m miss the small-scale cloud top structures, which limits their capabilities to provide indications about the cloud vertical structure.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...