ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018
    Description: 〈p〉Coupling spin qubits to electric fields is attractive to simplify qubit manipulation and couple qubits over long distances. Electron spins in silicon offer long lifetimes, but their weak spin-orbit interaction makes electrical coupling challenging. Hole spins bound to acceptor dopants, spin-orbit–coupled 〈i〉J〈/i〉 = 3/2 systems similar to Si vacancies in SiC and single Co dopants, are an electrically active spin system in silicon. However, 〈i〉J〈/i〉 = 3/2 systems are much less studied than 〈i〉S〈/i〉 = 1/2 electrons, and spin readout has not yet been demonstrated for acceptors in silicon. Here, we study acceptor hole spin dynamics by dispersive readout of single-hole tunneling between two coupled acceptors in a nanowire transistor. We identify 〈i〉m〈/i〉〈sub〉〈i〉J〈/i〉〈/sub〉 = ±1/2 and 〈i〉m〈/i〉〈sub〉〈i〉J〈/i〉〈/sub〉 = ±3/2 levels, and we use a magnetic field to overcome the initial heavy-light hole splitting and to tune the 〈i〉J〈/i〉 = 3/2 energy spectrum. We find regimes of spin-like (+3/2 to –3/2) and charge-like (±1/2 to ±3/2) relaxations, separated by a regime of enhanced relaxation induced by mixing of light and heavy holes. The demonstrated control over the energy level ordering and hybridization are new tools in the 〈i〉J〈/i〉 = 3/2 system that are crucial to optimize single-atom spin lifetime and electrical coupling.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-12-08
    Description: Coupling spin qubits to electric fields is attractive to simplify qubit manipulation and couple qubits over long distances. Electron spins in silicon offer long lifetimes, but their weak spin-orbit interaction makes electrical coupling challenging. Hole spins bound to acceptor dopants, spin-orbit–coupled J = 3/2 systems similar to Si vacancies in SiC and single Co dopants, are an electrically active spin system in silicon. However, J = 3/2 systems are much less studied than S = 1/2 electrons, and spin readout has not yet been demonstrated for acceptors in silicon. Here, we study acceptor hole spin dynamics by dispersive readout of single-hole tunneling between two coupled acceptors in a nanowire transistor. We identify m J = ±1/2 and m J = ±3/2 levels, and we use a magnetic field to overcome the initial heavy-light hole splitting and to tune the J = 3/2 energy spectrum. We find regimes of spin-like (+3/2 to –3/2) and charge-like (±1/2 to ±3/2) relaxations, separated by a regime of enhanced relaxation induced by mixing of light and heavy holes. The demonstrated control over the energy level ordering and hybridization are new tools in the J = 3/2 system that are crucial to optimize single-atom spin lifetime and electrical coupling.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...