ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Inorganic chemistry 34 (1995), S. 1377-1383 
    ISSN: 1520-510X
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0011-2240
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0011-2240
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Solid State Communications 84 (1992), S. 527-529 
    ISSN: 0038-1098
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Cryobiology 25 (1988), S. 528 
    ISSN: 0011-2240
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Journal of porous materials 4 (1997), S. 245-251 
    ISSN: 1573-4854
    Keywords: fly ash ; zeolite Y ; ageing ; seeding ; NMR
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Zeolite Y was selectively synthesised by treating Tarong fly ash in a hydrothermal system. The effects of ageing and seeding on the formation of the resultant phases, crystallisation kinetics, and gel chemistry of Si and Al were investigated. Most of the Si and Al components in the Tarong fly ash could be effectively transformed into zeolite Y in the presence of seeds but not the mineral phase, like mullite. The maximum crystallinity of zeolite Y obtained was 72%. The cation-exchange capacity (CEC) of the fly ash was 0.08 mmol/g but increased to 3.2 mmol/g after a proper treatment. Crystallisation of zeolite materials from fly ash is quite different from that of normal zeolite synthesis because the sources of Si and Al are relatively less reactive and other cation ions (e.g., K+, Mg2+) are present in fly ash. Zeolite P is a competitive phase present in the resulting products that could be eliminated by employing the seeding method. NMR study demonstrated that ageing plays an important role in enhancing the hydrothermal condition during which both Si and Al in fly ash dissolved into a basic solution and reacted to form ring-like structures, and further to zeolite materials. Seeding can selectively induce the formation of zeolite Y and eliminate the processes of induction and nucleation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-4854
    Keywords: pillared clays ; thermal stability ; montmorillonite ; N2 adsorption ; porosity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Montmorillonite intercalated with mixed pillars of lantana and alumina was prepared using a refluxed solution of aluminium chlorohydrate and lanthanum chloride. It is found that there are two main groups of pores in the pillared clays so prepared, one of which is around 8 Å, being close to that in alumina pillared clay (Al-PILC) and the other is about 14 Å. In contrast to the alumina pillared clays, a significantly larger specific surface area and micropore volume remained in LaAl-PILC after heating at high temperatures (700°C and 800°C). It seems that lanthanum ions react with the clay sheets during heating at high temperatures, resulting in a new porous solid phase which is thermally stable but has poor crystallinity. Calcium cations were introduced into the clays during the pillaring process. The calcium, distributed in the micropores of the product, LaAlCa-PILCs, further enhances the resistance to heating at high temperatures. After heating at 800°C, the BET surface area and micropore volume of a LaAlCa-PILC sample remained at about 138 m2/g and 0.05 cc/g, respectively, with a narrow pore size distribution in the micropore region. The influence of lanthanum and calcium on the pore structure as well as the evolution of pore structure in the PILCs upon heating at high temperatures are discussed in detail.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Journal of porous materials 5 (1998), S. 227-239 
    ISSN: 1573-4854
    Keywords: pillared clays ; cation doping ; pore structure tailoring ; adsorption
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Techniques and mechanism of doping controlled amounts of various cations into pillared clays without causing precipitation or damages to the pillared layered structures are reviewed and discussed. Transition metals of great interest in catalysis can be doped in the micropores of pillared clay in ionic forms by a two-step process. The micropore structures and surface nature of pillared clays are altered by the introduced cations, and this results in a significant improvement in adsorption properties of the clays. Adsorption of water, air components and organic vapors on cation-doped pillared clays were studied. The effects of the amount and species of cations on the pore structure and adsorption behavior are discussed. It is demonstrated that the presence of doped Ca2+ ions can effectively aides the control of modification of the pillared clays of large pore openings. Controlled cation doping is a simple and powerful tool for improving the adsorption properties of pillared clay.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Journal of porous materials 6 (1999), S. 135-142 
    ISSN: 1573-4854
    Keywords: alumina pillared clay ; cation exchange ; micropores ; adsorption isotherm ; water uptake
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Various amounts of Na+ ions were exchanged into alumina pillared bentonite (Al-PILB) sample, by controlling the pH of the dispersion of Al-PILB and sodium chloride solution. The Na+ doped pillared clays were calcined at elevated temperatures and adsorption of nitrogen at −196°C, cyclohexane and water at ambient temperature (21 ± 1°C) by the calcined samples were conducted. The results revealed a wide size distribution of the micropores in the pillared clay. Introduction of sodium ions converted the surface of the pore walls from hydrophobic to hydrophilic and blocks some micropores, enhancing water adsorption but reducing nitrogen and cyclohexane adsorption. Existence of Na+ ions in the pores did not improve the thermal stability of the pillared clay. Calcination at high temperatures resulted in a decrease in adsorption capacity. After calcination at 700°C, cyclohexane was inaccessible to the remaining micropores in the Na+ doped pillared clays. The adsorption behavior was clearly related to the cation content as well as the calcination temperature. These results may be useful in developing desiccants and adsorbents from pillared clays for dehumidification and adsorptive cooling applications.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Journal of porous materials 6 (1999), S. 143-151 
    ISSN: 1573-4854
    Keywords: gas separation ; membrane ; molecular sieving silica ; permeability and permselectivity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract High performance composite membranes based on molecular sieving silica (MSS) were synthesized using sols containing silicon co-polymers (methyltriethoxysilane and tetraethylorthosilicate). Alpha alumina supports were treated with hydrochloric acid prior to sol deposition. Permselectivity of CO2 over CH4 as high as 16.68 was achieved whilst permeability of CO2 up to 36.7 GPU (10−6 cm3 (STP) cm−2 · s−1 · cm Hg−1) was measured. The best membrane's permeability was finger printed during various stages of the synthesis process showing an increase in CO2/CH4 permselectivity by over 25 times from initial support condition (no membrane film) to the completion of pore structure tailoring. Transport measurement results indicate that the membrane pretreated with HCl has highest permselectivity and permeation rate. In particular, there is a definite cut-off pore size between 3.3 and 3.4 angstroms which is just below the kinetic diameters of Ar and CH4. This demonstrates that the mechanism for the separation in the prepared composite membrane is molecular sieving (activated diffusion), rather than Knudsen diffusion.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...