ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 151 (1998), S. 549-561 
    ISSN: 1420-9136
    Keywords: Key words: 3-D gravity modelling, European-Mediterranean, lithosphere and asthenosphere, mantle density heterogeneities.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract —Methods and the results of estimating the anomalies characterising the density inhomo geneities in the European-Mediterranean upper mantle are described. These anomalies were obtained by subtracting the gravity effect of a crustal density model derived from seismic velocities from the observed gravity field averaging over an area of 1°× 1°. The 3-D density model of the study region comprises two regional layers of varying thickness with lateral variation of average density the sedimentary cover and the crystalline crust. The average densities for model layers were evaluated by using a velocity/density conversion function and taking into account sediment consolidation with depth. Clear correlation between residual gravity anomalies and both velocity heterogeneities and thermal regime data of the upper mantle has been revealed. An agreement of positive anomalies over the Alps, the Adriatic plate and the Calabrian Arc with high velocity domains in the upper mantle and reduced temperatures at the subcrustal layer are caused by lithospheric "roots" and thickened lithosphere below these structures. Gravity residual lows, revealed over the Western Mediterranean Basin and Pannonian Basin, are in correspondence with both low velocities and high temperatures in the upper mantle. These anomalies are the result of the presence of asthenosphere in shallow near-Moho depths below these basins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 121 (1995), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: A map of the observed gravity field of Europe has been constructed by averaging anomalies on a 1° X 1° grid in a combined reduction of Bouguer anomalies on land and free-air anomalies offshore. On the basis of the observed gravity field and recent seismic data on crustal structure, a 3-D density model for the lithosphere of Europe has been calculated. The model is represented by two complementary parts, each obtained by its own specific method. For the south of Eastern Europe, the 3-D density model of the Earth's crust comprising the sedimentary cover and three layers within the crystalline crust (upper, intermediate and lower crust) was obtained by the following procedure: (1) the velocity model was transformed into a density distribution using the velocity-density relation; (2) the gravity field of this density distribution was calculated by solving the 3-D direct gravity problem; (3) the residual gravity field was obtained by subtracting the total gravity effect of the model and the regional component from the oberved gravity field; (4) the isostatic equilibrium of the model was evaluated; (5) in accordance with the residual anomalies and isostasy estimates, some changes (mainly in density distribution within the sedimentary cover) were entered into the initial density model and the final version of the density model was obtained for the consolidated crust as well as for areas with density inhomogeneities within the upper mantle.The correlation between Moho traveltimes and crustal gravity influence obtained from the results of 3-D modelling for the south of Eastern Europe, supplemented by 2-D modelling data available over Western Europe, makes it possible to estimate (without solving the direct gravity problem) the crustal gravity field for the whole European continent. Residual anomalies due to subcrustal density inhomogeneities have been interpreted in the light of seismic tomography and heat-flow distribution.For both parts of the model geological and geodynamical interpretations of the results have been made. In particular, differences in the deep structure of the two major geoblocks of the continent—the West and East European Platforms—have been confirmed. Regions of relatively light upper mantle have been outlined beneath the east and north-west of the East European Platform, while a heavier upper mantle has been distinguished below the Alps, the Caucasus, and the Calabrian Arc, as well as under the South Caspian Depression.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-06-11
    Description: A 3-D density model of Greece was developed by gravity modelling constrained by 2-D seismic profiles. Densities were defined from seismic velocities using the Nafe & Drake and Birch empirical functions for the sediments, crust and upper mantle. Sediments in the North Aegean are 6 km thick, and are deposited in transtensional basins developing by dextral strike slip motion of the North Anatolian Fault. The Cyclades, central Aegean Sea, are free of sediments. South of Crete, in the Libyan Sea, sediments are approximately 11 km thick. At the western Hellenides sediments of up to 8 km thickness have been accumulated in basins formed by crustal bending and southwestwards thrusting of the Hellenic napes. At a deeper crustal level variations of crustal type and thickness cause density variations explaining large part of the observed gravity field. The North Aegean domain is characterized by a 24-km-thick continental crust, including sediments, whereas the western Cyclades, in central Aegean area, have a slightly thickened crust of 26 km. Crustal thicknesses vary between 16 km in the deep Ionian and Cretan Seas to 40 km in the western Hellenides. In western Crete crust is 30–32 km thick, thinning eastwards to only 26 km. The deep Ionian basin, the Mediterranean Ridge, as well as most of the Libyan Sea are underlain by oceanic crust. In western Turkey the crust thickens from 30 km along the coast to 34 km to the interior. A third deeper level of density variations occurs in the upper mantle. Subduction of the oceanic lithosphere below the Aegean continental domain destabilizes the thermal field, uplifting the isotherms by convection and conduction below the Aegean Sea. Consequently, volume expansion of the upper mantle and lithological changes reduce its density and depress the gravity intensity. This low density–velocity upper mantle extends from the Sporades islands in the North Aegean to the Cretan Sea, occupying the space between the cold subducted Ionian oceanic lithosphere and the Aegean continental Moho. Upper mantle densities vary from 3.24 g cm –3 in the Aegean area to 3.29 g cm –3 below western Greece and the Ionian and Libyan Seas.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-10-29
    Description: The Greater Caucasus and southern Crimean Mountains form part of a fold–thrust belt located on the northern margin of the Black Sea, south of the Precambrian craton of eastern Europe. Its southern limit is approximated by the Main Caucasus Thrust, which runs to the west from onshore Russia and Georgia along the whole of the northern margin of the Black Sea. The Main Caucasus Thrust is related to a zone of present-day seismicity along the southern Crimea–Caucasus coast of the Black Sea called the Crimea–Caucasus Seismic Zone. Thick continental crust north of the Main Caucasus Thrust lies adjacent to the thin ‘suboceanic' or transitional crust of the Black Sea Basin. A local seismic tomography study of this area in the vicinity of the Kerch and Taman peninsulas, which lie between the Azov Sea and the Black Sea, has been carried out based on 195 weak (m b ≤3) earthquakes occurring from 1975 to 2010 and recorded at four permanent and three temporary seismological stations on the Kerch and Taman peninsulas. The results, for a volume of about 200 x 100 km (east–west and north–south, respectively) and a depth of about 40 km, provide evidence for significant heterogeneity in the P-wave and S-wave velocities. Velocities inferred in the northern part of the model suggest that the continental crust underlying the Crimea–Azov region north of the Main Caucasus Thrust is of different tectonic affinity (cratonic) than that underlying the northeastern part of the Black Sea, south of the Main Caucasus Thrust (Neoproterozoic–Palaeozoic accretionary domain). In the southern part of the model, at depths of 25–40 km, the uppermost mantle below the thin quasi-oceanic crust of the Black Sea has anomalous low P-wave velocities with high P- to S-wave velocity ratios. This is tentatively interpreted as representing serpentinized upper mantle of continental lithosphere exhumed during Cretaceous rifting and lithospheric hyperextension of the eastern Black Sea. The transition between the continental domains and the crust underlain by anomalous upper mantle is closely related to the Crimea–Caucasus Seismic Zone, where earthquake foci deepen northwards, suggesting that the latter is being thrust under the former in this intra-plate setting.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-05-25
    Description: The margin of the northeastern Black Sea is formed by the Crimea and Kerch peninsulas, which separate it from the Azov Sea to the north. The age and architecture of the sedimentary successions in this area are described from exploration reflection seismic profiling acquired in the area, in addition to the regional DOBRE-2 CDP profile acquired in 2007. The sediments range in age from Mesozoic to Quaternary and can be divided into five seismo-stratigraphic complexes linked to the tectono-sedimentological evolution of the area. The present regional basin architecture consists of a series of basement structural highs separating a series of sedimentary depocentres and is mainly a consequence of the compressional tectonic regime affecting the area since the Eocene. This has focused shortening deformation and uplift along the axis of the Crimea–Caucasus Inversion Zone on the Kerch Peninsula and Kerch Shelf of the Black Sea. Two major sedimentary basins that mainly formed during this time – the Sorokin Trough in the Black Sea and the Indolo-Kuban Trough to the north of the Kerch Peninsula in the Azov Sea – formed as marginal troughs to the main inversion zone.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-04-09
    Description: The tectonic evolution of the Eastern Black Sea Basin has previously been explained based on offshore and onshore data, some of the latter from the Crimean Mountains (CM). However, changes in the stratigraphy of the CM have recently been proposed: the Late Triassic–Early Jurassic Tauric Group was assigned as younger (Albian). To clarify the stratigraphy and the tectonic evolution of this area, we sampled the eastern CM for micropalaeontological datings (nannoplankton). The results demonstrate an Early Cretaceous age for the Tauric Group in the eastern CM. The samples contained substantial amounts of volcanic ash, indicating a period of magmatic activity along all the eastern CM. Our field observations allowed us to propose a new structural map and cross-sections, using which three main tectonic units were distinguished. We define a phase of extension during the Early Cretaceous and one of shortening during the Paleocene–Early Eocene, before the main Middle Eocene limestone unconformity. These two phases are related to: (1) the opening of the Eastern Black Sea Basin along NNW–SSE-trending normal faults and the associated magmatism; and (2) north–south shortening that could be comparable with the inversion in Dobrogea and/or with north–south shortening linked to the collision of continental blocks in the Pontides and Taurides domains.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-03-12
    Description: The backarc Black Sea (BS) basin was formed in the Late Cretaceous-Palaeocene at the hinterland of the Pontide magmatic arc due to subduction of the Neotethys ocean below the southern Eurasian continental margin. At present the BS consists of two large depressions—the West- and East-Black Sea basins (WBS and EBS) filled with thick (up to 12 km) Cretaceous and younger sediments and underlain by a crust of oceanic/suboceanic type. The sediments mask poorly investigated crystalline crust that is thought to comprise an accretional collage of microplates and terranes of different affinities. To investigate the lithospheric structure of the BS we performed a 3-D gravity analysis and local seismic tomography study. 3-D gravity backstripping analysis allowed us to separate the gravity signal from different parts of the crustal model and then, by subtracting the crustal effect from the observed field, to obtain gravity anomalies of presumed mantle origin only. The broad positive long wavelength component of this might be indicative of good isostatic equilibrium of the deep structure of the Black Sea, that is, that the negative gravity effect of sediments is almost totally compensated by the strong positive gravity impact of Moho shallowing. Velocity structure of the BS lithosphere has been studied by P -wave local seismic tomography. It uses the traveltimes of the earthquakes occurring inside the study region and recorded by permanent seismic stations around the BS. Initial data were corrected for the effect of the crust. The resulting model shows the BS lithosphere as being rather heterogeneous with two domains of increased velocity in its western and eastern parts. The gravity analysis and seismic tomography approaches were integrated by calculating the upper-mantle gravity effect of the tomography model and comparing this to the mantle gravity signature inferred from the gravity analysis itself. The integrated results suggest the presence of rheologically strong and cold continental lithosphere below the BS, similar to Precambrian lithosphere of the East European Platform.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-03-01
    Description: The Scythian Platform (ScP) with a heterogeneous basement of Baikalian–Variscan–Cimmerian age is located between the East European Craton (EEC) on the north and the Crimean–Caucasus orogenic belt and the Black Sea (BS) Basin on the south. In order to get new constrains on the basin architecture and crustal structure of the ScP and a better understanding of the tectonic processes and evolution of the southern margin of the EEC during Mesozoic and Cenozoic time, a 630-km-long seismic wide-angle refraction and reflection (WARR) profile DOBRE-5 was acquired in 2011 October. It crosses in a W–E direction the Fore-Dobrudja Trough, the Odessa Shelf of the BS and the Crimean Plain. The field acquisition included eight chemical shot points located every 50 km and recorded by 215 stations placed every ~2.0 km on the land. In addition, the offshore data from existing profile 26, placed in the Odessa Shelf, were used. The obtained seismic model shows clear lateral segmentation of the crust within the study region on four domains: the Fore-Dobrudja Domain (km 20–160), an offshore domain of the Karkinit Trough at the Odessa Shelf of the BS (km 160–360), an onshore domain of the Central Crimean Uplift (Crimean Plain, km 360–520) and the Indolo-Kuban Trough at the Kerch Peninsula (km 520–620) that is the easternmost part of the Crimea. Two contrasting domains of the ScP within the central part of the DOBRE-5 profile, the Karkinit Trough and the Central Crimean Uplift, may represent different stages of the ScP formation. A deep Karkinit Trough with an underlying high-velocity (〉7.16 km s –1 ) lower crust body suggests its rifting-related origin during Early Cretaceous time. The Central Crimean Uplift represents a thick (up to 47 km) crustal domain consisting of three layers with velocities 5.8–6.4, 6.5–6.6 and 6.7–7.0 km s –1 , which could be evidence of this part of the ScP originating on the crust of Precambrian craton (EEC). The thick heterogeneous basement of the Central Crimean Uplift shows inclusions of granitic bodies associated with magmatic activity related with Variscan orogeny within the ScP. General bending and crustal scale buckling of the Central Crimean Uplift with a wavelength of 230 km could be an effect of the Alpine compressional tectonics in the adjacent Crimean Mountains. The extended/rifted continental margin of the ScP (EEC) at the Odessa Shelf and buckling/uplifted domain of the Central Crimean Uplift affected by compressional tectonics, are separated by the N–S oriented Western Crimean Fault. The crust of the southern margin of the EEC is separated from the ScP, which originated on the EEC crust tectonised and reworked during the Palaeozoic–Mesozoic, by the crustal fault of ~W–E orientation, which corresponds with the Golitsyn Fault observed at the surface between the EEC and the ScP. The Fore-Dobrudja Domain with a thick (〉10 km) heterogeneous basement and two subhorizontal layers in the crystalline crust (with velocities 6.2–6.3 and 6.4–6.65 km s –1 ) differs from the ScP crust and its origin could be very similar to that of the Trans-European Suture Zone and Palaeozoic West European Platform.
    Keywords: Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 2016-01-01
    Print ISSN: 1069-3513
    Electronic ISSN: 1555-6506
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...