ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-10-03
    Description: Precursors of alpha-defensin peptides require activation for bactericidal activity. In mouse small intestine, matrilysin colocalized with alpha-defensins (cryptdins) in Paneth cell granules, and in vitro it cleaved the pro segment from cryptdin precursors. Matrilysin-deficient (MAT-/-) mice lacked mature cryptdins and accumulated precursor molecules. Intestinal peptide preparations from MAT-/- mice had decreased antimicrobial activity. Orally administered bacteria survived in greater numbers and were more virulent in MAT-/- mice than in MAT+/+ mice. Thus, matrilysin functions in intestinal mucosal defense by regulating the activity of defensins, which may be a common role for this metalloproteinase in its numerous epithelial sites of expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, C L -- Ouellette, A J -- Satchell, D P -- Ayabe, T -- Lopez-Boado, Y S -- Stratman, J L -- Hultgren, S J -- Matrisian, L M -- Parks, W C -- New York, N.Y. -- Science. 1999 Oct 1;286(5437):113-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatrics, Division of Allergy and Pulmonary Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA. wilson_c@kids.wustl.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10506557" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Catalysis ; Cytoplasmic Granules/enzymology ; Escherichia coli/growth & development ; Escherichia coli Infections/immunology/microbiology ; Female ; Humans ; *Immunity, Innate ; *Immunity, Mucosal ; Intestinal Mucosa/enzymology/immunology/microbiology ; Intestine, Small/enzymology/*immunology/microbiology ; Male ; Matrix Metalloproteinase 7 ; Metalloendopeptidases/genetics/*metabolism ; Mice ; Molecular Sequence Data ; Paneth Cells/enzymology ; Protein Precursors/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Salmonella typhimurium/growth & development/pathogenicity ; Tissue Extracts/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-11-20
    Description: Virtually all uropathogenic strains of Escherichia coli encode filamentous surface adhesive organelles called type 1 pili. High-resolution electron microscopy of infected mouse bladders revealed that type 1 pilus tips interacted directly with the lumenal surface of the bladder, which is embedded with hexagonal arrays of integral membrane glycoproteins known as uroplakins. Attached pili were shortened and facilitated intimate contact of the bacteria with the uroplakin-coated host cells. Bacterial attachment resulted in exfoliation of host bladder epithelial cells as part of an innate host defense system. Exfoliation occurred through a rapid apoptosis-like mechanism involving caspase activation and host DNA fragmentation. Bacteria resisted clearance in the face of host defenses within the bladder by invading into the epithelium.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mulvey, M A -- Lopez-Boado, Y S -- Wilson, C L -- Roth, R -- Parks, W C -- Heuser, J -- Hultgren, S J -- AI09787/AI/NIAID NIH HHS/ -- R01AI29549/AI/NIAID NIH HHS/ -- R01DK51406/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1998 Nov 20;282(5393):1494-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology and Microbial Pathogenesis, Box 8230, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9822381" target="_blank"〉PubMed〈/a〉
    Keywords: Adhesins, Bacterial/metabolism ; *Adhesins, Escherichia coli ; Amino Acid Chloromethyl Ketones/pharmacology ; Animals ; Apoptosis ; Bacterial Adhesion ; Caspase Inhibitors ; Caspases/metabolism ; Cysteine Proteinase Inhibitors/pharmacology ; Cystitis/*microbiology/pathology ; DNA Fragmentation ; Escherichia coli/genetics/*pathogenicity ; Escherichia coli Infections/*microbiology/pathology ; Female ; *Fimbriae Proteins ; Fimbriae, Bacterial/physiology/ultrastructure ; In Situ Nick-End Labeling ; Membrane Glycoproteins/analysis/metabolism ; Mice ; Mice, Inbred C57BL ; Microscopy, Electron ; Microscopy, Electron, Scanning ; Tetraspanins ; Urinary Bladder/chemistry/*microbiology/pathology ; Uroplakin Ib ; Urothelium/microbiology/pathology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 147 (1987), S. 231-234 
    ISSN: 1432-072X
    Keywords: Isocitrate lyase ; Catabolite inactivation ; Cyclic AMP
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A reversible carbon catabolite inactivation step is described for isocitrate lyase from Saccharomyces cerevisiae. This reversible inactivation step of isocitrate lyase is similar to that described for fructose 1,6-bisphosphatase. Addition of 2,4-dinitrophenol, nystatin or glucose to cultures, grown in ethanol as carbon source, caused a rapid loss of the isocitrate lyase and fructose 1,6-bisphosphatase activities at pH 5.5 but not at pH 7.5. These results suggest that intracellular acidification and thus a cAMP increase is involved in the catabolite inactivation mechanism of both enzymes. From results obtained by addition of glucose to yeast cultures at pH 7.5 it was concluded that others factors than cAMP can play a role in the catabolite inactivation mechanism of both enzymes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...