ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Klawonn, Isabell; Eichner, Meri J; Wilson, Samuel T; Moradi, Nasrollah; Thamdrup, Bo; Kümmel, Steffen; Gehre, Matthias; Khalili, Arzhang; Grossart, Hans-Peter; Karl, David Michael; Ploug, Helle (2020): Distinct nitrogen cycling and steep chemical gradients in Trichodesmium colonies. The ISME Journal, 14(2), 399-412, https://doi.org/10.1038/s41396-019-0514-9
    Publication Date: 2023-01-13
    Description: Trichodesmium is an important dinitrogen (N~2~)-fixing cyanobacterium in marine ecosystems. Recent nucleic acid analyses indicate that Trichodesmium colonies with their diverse epibionts support various nitrogen (N) transformations beyond N~2~-fixation. However, rates of these transformations and concentration gradients of N-compounds in Trichodesmium colonies remain largely unresolved. We combined isotope-tracer incubations, micro-profiling, and numeric modelling to explore carbon fixation, N-cycling processes, as well as oxygen, ammonium and nitrate concentration gradients in individual field-sampled Trichodesmium colonies. Colonies were net-autotrophic, with carbon and N~2~-fixation occurring mostly at day-time. Ten percent of the fixed N was released as ammonium after 12-hour incubations. Nitrification was not detectable but nitrate consumption was high when nitrate was added. The consumed nitrate was partly reduced to ammonium, while denitrification was insignificant. Thus, the potential N-transformation network was characterized by fixed N gain and recycling processes rather than denitrification. Oxygen concentrations within colonies were 60–200% air-saturation. Moreover, our modelling predicted steep concentration gradients, with up to 6-fold higher ammonium concentrations, and nitrate depletion in the colony centre compared to the ambient seawater. These gradients created a chemically heterogeneous microenvironment, presumably facilitating diverse microbial metabolisms in millimetre-sized Trichodesmium colonies.
    Keywords: Computer-simulated concentration profiles; File format; File name; File size; Microsensor concentration profiles; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 12 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Engel, Anja; Wagner, Hannes; Le Moigne, Frédéric A C; Wilson, Samuel T (2017): Particle export fluxes to the oxygen minimum zone of the eastern tropical North Atlantic. Biogeosciences, 14(7), 1825-1838, https://doi.org/10.5194/bg-14-1825-2017
    Publication Date: 2023-10-28
    Description: In the ocean, sinking of particulate organic mat- ter (POM) drives carbon export from the euphotic zone and supplies nutrition to mesopelagic communities, the feeding and degradation activities of which in turn lead to export flux attenuation. Oxygen (O2) minimum zones (OMZs) with suboxic water layers (〈 5 µmol O2 kg-1 ) show a lower carbon flux attenuation compared to well- oxygenated waters (〉 100 µmol O2 kg-1), supposedly due to reduced heterotrophic activity. This study focuses on sinking particle fluxes through hypoxic mesopelagic waters (〈 60 µmol O2 kg-1); these represent about 100 times more ocean volume globally compared to suboxic waters, but they have less been studied. Particle export fluxes and attenuation coefficients were determined in the eastern tropical North Atlantic (ETNA) using two surface-tethered drifting sediment trap arrays with seven trapping depths located between 100 and 600 m.
    Keywords: Climate - Biogeochemistry Interactions in the Tropical Ocean; SFB754
    Type: Dataset
    Format: application/zip, 6 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 29 (2015): 1145–1164, doi:10.1002/2015GB005141.
    Description: Time-series observations are critical to understand the structure, function, and dynamics of marine ecosystems. The Hawaii Ocean Time-series program has maintained near-monthly sampling at Station ALOHA (22°45′N, 158°00′W) in the oligotrophic North Pacific Subtropical Gyre (NPSG) since 1988 and has identified ecosystem variability over seasonal to interannual timescales. To further extend the temporal resolution of these near-monthly time-series observations, an extensive field campaign was conducted during July–September 2012 at Station ALOHA with near-daily sampling of upper water-column biogeochemistry, phytoplankton abundance, and activity. The resulting data set provided biogeochemical measurements at high temporal resolution and documents two important events at Station ALOHA: (1) a prolonged period of low productivity when net community production in the mixed layer shifted to a net heterotrophic state and (2) detection of a distinct sea-surface salinity minimum feature which was prominent in the upper water column (0–50 m) for a period of approximately 30 days. The shipboard observations during July–September 2012 were supplemented with in situ measurements provided by Seagliders, profiling floats, and remote satellite observations that together revealed the extent of the low productivity and the sea-surface salinity minimum feature in the NPSG.
    Description: NOAA Climate Observation Division; National Science Foundation (NSF) Center for Microbial Oceanography: Research and Education (C-MORE) Grant Numbers: EF0424599, OCE-1153656, OCE-1260164; Gordon and Betty Moore Foundation Marine Microbiology Investigator
    Description: 2016-02-13
    Keywords: Primary productivity ; Microbial ecology ; Station ALOHA ; Temporal variability ; Biogeochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geophysical Research Letters 42 (2015): 4032–4039, doi:10.1002/2015GL063065.
    Description: Using autonomous underwater gliders, we quantified diurnal periodicity in dissolved oxygen, chlorophyll, and temperature in the subtropical North Pacific near the Hawaii Ocean Time-series (HOT) Station ALOHA during summer 2012. Oxygen optodes provided sufficient stability and precision to quantify diel cycles of average amplitude of 0.6 µmol kg−1. A theoretical diel curve was fit to daily observations to infer an average mixed layer gross primary productivity (GPP) of 1.8 mmol O2 m−3 d−1. Cumulative net community production (NCP) over 110 days was 500 mmol O2 m−2 for the mixed layer, which averaged 57 m in depth. Both GPP and NCP estimates indicated a significant period of below-average productivity at Station ALOHA in 2012, an observation confirmed by 14C productivity incubations and O2/Ar ratios. Given our success in an oligotrophic gyre where biological signals are small, our diel GPP approach holds promise for remote characterization of productivity across the spectrum of marine environments.
    Description: The authors acknowledge support from the National Science Foundation (NSF) through an NSF Science and Technology Center, the Center for Microbial Oceanography Research and Education (C-MORE; NSF EF-0424599). D.N. also was supported by NSF (OCE-1129644) and an Independent Study Award from the Woods Hole Oceanographic Institution (WHOI). D.M.K. was also supported by the Gordon and Betty Moore Foundation. WHOI Summer Student Fellow Cole Stites-Clayton, Stanford University, contributed to early stages of Seaglider data analysis and was supported by an NSF REU grant to WHOI (OCE-1156952).
    Keywords: Primary productivity ; Glider ; Diel ; Oxygen ; Net community production ; Hawaii
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 15 (2018): 5891-5907, doi:10.5194/bg-15-5891-2018.
    Description: Large-scale climatic forcing is impacting oceanic biogeochemical cycles and is expected to influence the water-column distribution of trace gases, including methane and nitrous oxide. Our ability as a scientific community to evaluate changes in the water-column inventories of methane and nitrous oxide depends largely on our capacity to obtain robust and accurate concentration measurements that can be validated across different laboratory groups. This study represents the first formal international intercomparison of oceanic methane and nitrous oxide measurements whereby participating laboratories received batches of seawater samples from the subtropical Pacific Ocean and the Baltic Sea. Additionally, compressed gas standards from the same calibration scale were distributed to the majority of participating laboratories to improve the analytical accuracy of the gas measurements. The computations used by each laboratory to derive the dissolved gas concentrations were also evaluated for inconsistencies (e.g., pressure and temperature corrections, solubility constants). The results from the intercomparison and intercalibration provided invaluable insights into methane and nitrous oxide measurements. It was observed that analyses of seawater samples with the lowest concentrations of methane and nitrous oxide had the lowest precisions. In comparison, while the analytical precision for samples with the highest concentrations of trace gases was better, the variability between the different laboratories was higher: 36% for methane and 27% for nitrous oxide. In addition, the comparison of different batches of seawater samples with methane and nitrous oxide concentrations that ranged over an order of magnitude revealed the ramifications of different calibration procedures for each trace gas. Finally, this study builds upon the intercomparison results to develop recommendations for improving oceanic methane and nitrous oxide measurements, with the aim of precluding future analytical discrepancies between laboratories.
    Description: U.S. National Science Foundation (OCE-1546580); Funding for the gas standards was provided by the Center for Microbial Oceanography: Research and Education (C-MORE; EF0424599 to David M. Karl), SCOR, the EU FP7 funded Integrated non-CO2 Greenhouse gas Observation System (InGOS) (grant agreement no. 284274), and NOAA’s Climate Program Office, Climate Observations Division. Additional support was provided by the Gordon and Betty Moore Foundation no. 3794 (David M. Karl), the Simons Collaboration on Ocean Processes and Ecology (SCOPE; no. 329108 to David M. Karl), and the Global Research Laboratory Program (no. 2013K1A1A2A02078278 to David M. Karl) through the National Research Foundation of Korea (NRF); Alyson E. Santoro would like to acknowledge NSF OCE-1437310. Mercedes de la Paz would like to acknowledge the support of the Spanish Ministry of Economy and Competitiveness (CTM2015-74510-JIN). Laura Farías received financial support from FONDAP 1511009 and FONDECYT no. 1161138
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Inomura, K., Deutsch, C., Wilson, S. T., Masuda, T., Lawrenz, E., Lenka, B., Sobotka, R., Gauglitz, J. M., Saito, M. A., Prášil, O., & Follows, M. J. Quantifying oxygen management and temperature and light dependencies of nitrogen fixation by Crocosphaera watsonii. Msphere, 4(6), (2019): e00531-19, doi: 10.1128/msphere.00531-19.
    Description: Crocosphaera is a major dinitrogen (N2)-fixing microorganism, providing bioavailable nitrogen (N) to marine ecosystems. The N2-fixing enzyme nitrogenase is deactivated by oxygen (O2), which is abundant in marine environments. Using a cellular scale model of Crocosphaera sp. and laboratory data, we quantify the role of three O2 management strategies by Crocosphaera sp.: size adjustment, reduced O2 diffusivity, and respiratory protection. Our model predicts that Crocosphaera cells increase their size under high O2. Using transmission electron microscopy, we show that starch granules and thylakoid membranes are located near the cytoplasmic membranes, forming a barrier for O2. The model indicates a critical role for respiration in protecting the rate of N2 fixation. Moreover, the rise in respiration rates and the decline in ambient O2 with temperature strengthen this mechanism in warmer water, providing a physiological rationale for the observed niche of Crocosphaera at temperatures exceeding 20°C. Our new measurements of the sensitivity to light intensity show that the rate of N2 fixation reaches saturation at a lower light intensity (∼100 μmol m−2 s−1) than photosynthesis and that both are similarly inhibited by light intensities of 〉500 μmol m−2 s−1. This suggests an explanation for the maximum population of Crocosphaera occurring slightly below the ocean surface.
    Description: We thank Stephanie Dutkiewicz and Sallie W. Chisholm for useful discussion, Martin Lukeš for technical assistance for the N2 fixation measurement, and the members of Writing and Communication Center at MIT for their advice on writing. This research was supported by the Japan Student Service Organization (JASSO) (grant L11171020001 to K.I.), the Gordon and Betty Moore Foundation (grant GBMF 3775 to C.D. and grant GBMF 3778 to M.J.F.), the U.S. National Science Foundation (grant OCE-1756524 to S.T.W., grant OCE-1558702 to M.J.F., and grant OCE-PRF 1421196 to J.M.G), the Simons Foundation (Simons Postdoctoral Fellowship in Marine Microbial Ecology award 544338 to K.I., Simons Collaboration on Ocean Processes and Ecology award 329108 to M.J.F., Simons Collaboration on Computational BIOgeochemical Modeling of Marine EcosystemS [CBIOMES] award 549931 to M.J.F.), the Czech Science Foundation (GAČR) (grant 16-15467S to O.P.), and the National Sustainability Programme (NPU) (grant LO1416 Algatech plus to O.P.).
    Keywords: Crocosphaera ; Carbon ; Cell flux model ; Daily cycle ; Iron ; Light ; Nitrogen ; Nitrogen fixation ; Oxygen ; Photosynthesis ; Temperature
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sosa, O. A., Burrell, T. J., Wilson, S. T., Foreman, R. K., Karl, D. M., & Repeta, D. J. Phosphonate cycling supports methane and ethylene supersaturation in the phosphate-depleted western North Atlantic Ocean. Limnology and Oceanography, (2020), doi:10.1002/lno.11463.
    Description: In oligotrophic ocean regions, dissolved organic phosphorus (DOP) plays a prominent role as a source of phosphorus (P) to microorganisms. An important bioavailable component of DOP is phosphonates, organophosphorus compounds with a carbon‐phosphorus (C‐P) bond, which are ubiquitous in high molecular weight dissolved organic matter (HMWDOM). In addition to being a source of P, the degradation of phosphonates by the bacterial C‐P lyase enzymatic pathway causes the release of trace hydrocarbon gases relevant to climate and atmospheric chemistry. In this study, we investigated the roles of phosphate and phosphonate cycling in the production of methane (CH4) and ethylene (C2H4) in the western North Atlantic Ocean, a region that features a transition in phosphate concentrations from coastal to open ocean waters. We observed an inverse relationship between phosphate and the saturation state of CH4 and C2H4 in the water column, and between phosphate and the relative abundance of the C‐P lyase marker gene phnJ . In phosphate‐depleted waters, methylphosphonate and 2‐hydroxyethylphosphonate, the C‐P lyase substrates that yield CH4 and C2H4, respectively, were readily degraded in proportions consistent with their abundance and bioavailability in HMWDOM and with the concentrations of CH4 and C2H4 in the water column. We conclude that phosphonate degradation through the C‐P lyase pathway is an important source and a common production pathway of CH4 and C2H4 in the phosphate‐depleted surface waters of the western North Atlantic Ocean and that phosphate concentration can be an important control on the saturation state of these gases in the upper ocean.
    Description: We thank the captain and crew of the R/V Neil Armstrong and chief scientist Benjamin Van Mooy for supporting and leading research at sea. Chiara Santinelli and Eric Grabowski provided analyses of dissolved organic carbon. This research was funded by NSF Chemical Oceanography award OCE‐1634080 to D.J.R. Additional support was provided by the Gordon and Betty Moore Foundation grant 3794 to D.M.K. and grant 6000 to D.J.R., and the Simons Collaboration on Ocean Processes and Ecology (SCOPE) program grant 329108 to D.M.K., E.F.D., and D.J.R.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wilson, S. T., Al-Haj, A. N., Bourbonnais, A., Frey, C., Fulweiler, R. W., Kessler, J. D., Marchant, H. K., Milucka, J., Ray, N. E., Suntharalingam, P., Thornton, B. F., Upstill-Goddard, R. C., Weber, T. S., Arevalo-Martinez, D. L., Bange, H. W., Benway, H. M., Bianchi, D., Borges, A., V., Chang, B. X., Crill, P. M., del Valle, D. A., Farias, L., Joye, S. B., Kock, A., Labidi, J., Manning, C. C., Pohlman, J. W., Rehder, G., Sparrow, K. J., Tortell, P. D., Treude, T., Valentine, D. L., Ward, B. B., Yang, S., & Yurganov, L. N. Ideas and perspectives: a strategic assessment of methane and nitrous oxide measurements in the marine environment. Biogeosciences, 17(22), (2020): 5809-5828, https://doi.org/10.5194/bg-17-5809-2020.
    Description: In the current era of rapid climate change, accurate characterization of climate-relevant gas dynamics – namely production, consumption, and net emissions – is required for all biomes, especially those ecosystems most susceptible to the impact of change. Marine environments include regions that act as net sources or sinks for numerous climate-active trace gases including methane (CH4) and nitrous oxide (N2O). The temporal and spatial distributions of CH4 and N2O are controlled by the interaction of complex biogeochemical and physical processes. To evaluate and quantify how these mechanisms affect marine CH4 and N2O cycling requires a combination of traditional scientific disciplines including oceanography, microbiology, and numerical modeling. Fundamental to these efforts is ensuring that the datasets produced by independent scientists are comparable and interoperable. Equally critical is transparent communication within the research community about the technical improvements required to increase our collective understanding of marine CH4 and N2O. A workshop sponsored by Ocean Carbon and Biogeochemistry (OCB) was organized to enhance dialogue and collaborations pertaining to marine CH4 and N2O. Here, we summarize the outcomes from the workshop to describe the challenges and opportunities for near-future CH4 and N2O research in the marine environment.
    Description: This article was an outcome of a workshop organized by the Ocean Carbon and Biogeochemistry (OCB) project office, which is supported by the US National Science Foundation (grant no. 1558412) and the National Aeronautics and Space Administration (grant no. NNX17AB17G). The workshop received additional funding from the Scientific Committee on Ocean Research (SCOR) which receives funding from the US National Science Foundation (grant no. 1840868) and contributions by additional national SCOR committees. The Chilean COPAS N2O time-series measurements were supported by Agencia Nacional de Investigación y Desarrollo (grant no. 1200861).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zhang, Y., Kieft, B., Hobson, B. W., Ryan, J. P., Barone, B., Preston, C. M., Roman, B., Raanan, B., Marin,Roman,,III, O'Reilly, T. C., Rueda, C. A., Pargett, D., Yamahara, K. M., Poulos, S., Romano, A., Foreman, G., Ramm, H., Wilson, S. T., DeLong, E. F., Karl, D. M., Birch, J. M., Bellingham, J. G., & Scholin, C. A. Autonomous tracking and sampling of the deep chlorophyll maximum layer in an open-ocean eddy by a long-range autonomous underwater vehicle. IEEE Journal of Oceanic Engineering, 45(4), (2020): 1308-1321, doi:10.1109/JOE.2019.2920217.
    Description: Phytoplankton communities residing in the open ocean, the largest habitat on Earth, play a key role in global primary production. Through their influence on nutrient supply to the euphotic zone, open-ocean eddies impact the magnitude of primary production and its spatial and temporal distributions. It is important to gain a deeper understanding of the microbial ecology of marine ecosystems under the influence of eddy physics with the aid of advanced technologies. In March and April 2018, we deployed autonomous underwater and surface vehicles in a cyclonic eddy in the North Pacific Subtropical Gyre to investigate the variability of the microbial community in the deep chlorophyll maximum (DCM) layer. One long-range autonomous underwater vehicle (LRAUV) carrying a third-generation Environmental Sample Processor (3G-ESP) autonomously tracked and sampled the DCM layer for four days without surfacing. The sampling LRAUV's vertical position in the DCM layer was maintained by locking onto the isotherm corresponding to the chlorophyll peak. The vehicle ran on tight circles while drifting with the eddy current. This mode of operation enabled a quasi-Lagrangian time series focused on sampling the temporal variation of the DCM population. A companion LRAUV surveyed a cylindrical volume around the sampling LRAUV to monitor spatial and temporal variation in contextual water column properties. The simultaneous sampling and mapping enabled observation of DCM microbial community in its natural frame of reference.
    Description: 10.13039/501100008982 - National Science Foundation 10.13039/100000936 - Gordon and Betty Moore Foundation 10.13039/100000008 - David and Lucile Packard Foundation 10.13039/100016377 - Schmidt Ocean Institute 10.13039/100000893 - Simons Foundation
    Keywords: Autonomous underwater vehicle (AUV) ; eddy ; Environmental Sample Processor (ESP) ; phytoplankton ; sampling ; tracking
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-10-12
    Description: A diverse microbial assemblage in the ocean is responsible for nearly half of global primary production. It has been hypothesized and experimentally demonstrated that nutrient loading can stimulate blooms of large eukaryotic phytoplankton in oligotrophic systems. Although central to balancing biogeochemical models, knowledge of the metabolic traits that govern the dynamics of these bloom-forming phytoplankton is limited. We used eukaryotic metatranscriptomic techniques to identify the metabolic basis of functional group-specific traits that may drive the shift between net heterotrophy and autotrophy in the oligotrophic ocean. Replicated blooms were simulated by deep seawater (DSW) addition to mimic nutrient loading in the North Pacific Subtropical Gyre, and the transcriptional responses of phytoplankton functional groups were assayed. Responses of the diatom, haptophyte, and dinoflagellate functional groups in simulated blooms were unique, with diatoms and haptophytes significantly (95% confidence) shifting their quantitative metabolic fingerprint from the in situ condition, whereas dinoflagellates showed little response. Significantly differentially abundant genes identified the importance of colimitation by nutrients, metals, and vitamins in eukaryotic phytoplankton metabolism and bloom formation in this system. The variable transcript allocation ratio, used to quantify transcript reallocation following DSW amendment, differed for diatoms and haptophytes, reflecting the long-standing paradigm of phytoplankton r- and K-type growth strategies. Although the underlying metabolic potential of the large eukaryotic phytoplankton was consistently present, the lack of a bloom during the study period suggests a crucial dependence on physical and biogeochemical forcing, which are susceptible to alteration with changing climate.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...