ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    Publication Date: 2023-07-22
    Description: In March/April 2018 during a cruise on R/V Sally Ride, SR1805, 15N-NH4+ incubations in 60mL glass serum bottles were performed to measure ammonium oxidation rates to nitrite and nitrous oxide in different depth at 3 different stations in the oxygen deficient zone (ODZ) of the Eastern Tropical North Pacific off the coast of Mexico. Water samples were collected from 30L Niskin bottles deployed with a conductivity-temperature-depth profiler (CTD, Seabird Electronics). The goal was to get a better understanding on the controls of nitrous oxide (N2O) production. The N2O production rate experiments were performed according to Bourbonnais et al. 2021 (https://doi.org/10.3389/fmars.2021.611937). Furthermore, ammonium (NH4+), nitrite (NO2-) and nitrate (NO3-) as well as N2O concentrations were determined using standard fluorometric (Holmes et al. 1999, https://doi.org/10.1139/f99-128), photometric (Strickland and Parsons 1972, hdl:10013/epic.46454.d001), chemiluminescent (Braman and Hendrix 1989, doi:10.1021/ac00199a007) and mass spectrometric techniques (McIlvin and Casciotti 2010, https://doi.org/10.4319/lom.2010.8.54), respectively. The N2O yield per nitrite produced was calculated. The archaeal ammonia monooxygenase gene subunit A (amoA) copy numbers/mL were determined using qPCR as described previously (Peng et al. 2015, https://doi.org/10.1002/2015GB005278).
    Keywords: 15N-tracer; 15N tracer incubations (Bourbonnais et al. 2021); Ammonium; Ammonium, labelled, fraction; Ammonium, oxidation rate; Ammonium, oxidation rate, standard error; ammonium oxidation; amoA gene, copy number; amoA gene, copy number, standard deviation; Bottle number; Calculated; Cast number; Chemiluminescence detection (Braman and Hendrix 1989); Comment; CTD, Sea-Bird; CTD/Rosette; CTD-RO; DATE/TIME; Density, sigma-theta (0); Depth, bottom/max; DEPTH, water; eastern tropical north pacific; Event label; Fluorometry (Holmes et al. 1999); greenhouse gas; Identification; LATITUDE; LONGITUDE; Mass spectrometry (McIlvin and Casciotti 2010); N2O production rates; Nitrate; Nitrite; nitrogen cycle; Nitrous oxide, dissolved; Nitrous oxide, hybrid; Nitrous oxide, hybrid, standard error; Nitrous oxide, standard deviation; Nitrous oxide, yield; Nitrous oxide, yield, standard error; Nitrous oxide production; Nitrous oxide production, standard error; North Pacific Ocean; ocean; Oxygen; Photometry (Strickland & Parsons, 1972); Radiation, photosynthetically active; Real-time quantitative polymerase chain reaction (qPCR); Salinity; Sally Ride; SR1805; SR1805_PS1_CTD16; SR1805_PS1_CTD5; SR1805_PS2_CTD32; SR1805_PS2_CTD45; SR1805_PS3_CTD71; SR1805_PS3_CTD84; Station label; STOX; Switchable trace oxygen sensor; Temperature, water; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 796 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-10-28
    Description: N2O production rates from ammonium, nitrite and nitrate and nitrate reduction rates and ammonium oxidation rates from the top 400 m water depth off the coast of Peru sampled from R/V Meteor during M138 in June 2017.
    Keywords: Ammonium; Ammonium, oxidation rate; Climate - Biogeochemistry Interactions in the Tropical Ocean; CTD/Rosette; CTD 013; CTD 018; CTD 036; CTD 044; CTD 063; CTD 069; CTD 076; CTD 085; CTD 099; CTD-RO; DATE/TIME; Density, sigma-theta (0); DEPTH, water; ELEVATION; Event label; LATITUDE; LONGITUDE; M138; M138_882-11; M138_883-15; M138_892-3; M138_894-4; M138_904-7; M138_906-7; M138_907-7; M138_912-1; M138_917-3; Meteor (1986); Nitrate; Nitrate, reduction rate; Nitrate and Nitrite; Nitrite; Nitrous oxide production; OMZ; Oxygen; Phosphate; Ratio; Salinity; Sample code/label; SFB754; Silicate; Standard deviation; Standard error; Temperature, water; Yield
    Type: Dataset
    Format: text/tab-separated-values, 474 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-12-15
    Keywords: 15N-tracer; 15N tracer incubations, calulated (Trimmer et al. 2016); 15N tracer incubations (Wenk et al. 2013); Ammonium-15, production; Ammonium-15, production, standard error; anoxia; Calculated; chemodenitrification; DATE/TIME; Denitrification; DEPTH, water; Experimental treatment; ferruginous; IRMS, hypobromite method (Robertson et al. 2016); Lake_LaCruz; Measurement conducted; meromixis; MULT; Multiple investigations; N2O production rates; N2O site preference; nitrification; nitrifier denitrification; Nitrite, production; Nitrite, production, standard error; Nitrogen-15, tracer; Nitrogen-15, tracer, fraction; Nitrogen-15, tracer, reduction; Nitrogen-15, tracer, reduction, standard error; Nitrogen gas, 29N2, production; Nitrogen gas, 29N2, production, standard error; Nitrogen gas, 30N2, production; Nitrogen gas, 30N2, production, standard error; nitrogen isotopes; nitrous oxide; Nitrous oxide, production; Nitrous oxide, production, standard error; Nitrous oxide/Nitrogen-15 tracer reduction ratio; Oxic condition; oxycline; Photometrical detection, Griess reagent method (Hansen and Koroleff 1999); Spain; Various methods; water column
    Type: Dataset
    Format: text/tab-separated-values, 303 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-12-15
    Keywords: 15N-tracer; Ammonium; Ammonium/δ15N ratio; anoxia; Calculated according to Weiss and Price (1980); Chemiluminescence detection of NO, Vanadium(III) method (Braman and Hendrix 1989); chemodenitrification; DATE/TIME; Denitrification; DEPTH, water; ferruginous; Gas chromatography - Isotope ratio mass spectrometer (GC-IRMS); GC-IRMS, denitrifier method (Sigman et al. 2001); GC-IRMS, hypobromite method (Zhang et al. 2007); HPLC, Fluorescence detection, monobromobimane method (Fahey and Newton 1987); Hydrogen sulfide; ICP-MS, Spectro Ciros Vision (2015), ICP-OES, Agilent Technologies (2017); Ion chromatography (940 Professional IC Vario, Metrohm); Iron, dissolved; Iron, particulate; Lake_LaCruz; meromixis; MULT; Multiparameter probe; Multiple investigations; N2O production rates; N2O site preference; Nitrate; Nitrate/δ15N ratio; Nitrate/δ18O ratio; nitrification; nitrifier denitrification; Nitrite; nitrogen isotopes; Nitrogen oxide (nitrate + nitrite)/δ15N ratio; nitrous oxide; Nitrous oxide, dissolved; Nitrous oxide, dissolved, equilibrium; Nitrous oxide/δ15N ratio; Nitrous oxide/δ18O ratio; oxycline; Photometrical detection, Griess reagent method (Hansen and Koroleff 1999); Photometrical detection, Phenol method (Hansen and Koroleff 1999); Site preference, N2O; Spain; Sulfate; water column
    Type: Dataset
    Format: text/tab-separated-values, 581 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-12-15
    Keywords: 15N-tracer; anoxia; chemodenitrification; Chlorophyll a; Conductivity, electrical; DATE/TIME; Denitrification; DEPTH, water; ECO-FL, Wetlands, EX/EM= 470/695; ferruginous; Hydrogen sulfide; Lake_LaCruz; meromixis; Micro-optode PSt1 (Kirf et al. 2014); Micro-optode TOS7 (Kirf et al. 2014); MULT; Multiple investigations; N2O production rates; N2O site preference; nitrification; nitrifier denitrification; nitrogen isotopes; nitrous oxide; oxycline; Oxygen; PAR sensor LI-193 (Spherical Underwater Quantum Sensor) Li-COR Inc.; pH; Profiling in situ analyzer, multi-parameter-probe; Radiation, photosynthetically active; Salinity; Spain; Temperature, water; Turbidity (Nephelometric turbidity unit); water column
    Type: Dataset
    Format: text/tab-separated-values, 51581 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-12
    Keywords: 15N-tracer; anoxia; chemodenitrification; DATE/TIME; Denitrification; DEPTH, water; Duration; ferruginous; Gas chromatography - Isotope ratio mass spectrometer (GC-IRMS); GC-IRMS, azide method (McIlvin and Altabet 2005); Iron II, dissolved; Lake_LaCruz; meromixis; MULT; Multiple investigations; N2O production rates; N2O site preference; nitrification; nitrifier denitrification; Nitrite; Nitrite/δ15N ratio; Nitrite/δ18O ratio; nitrogen isotopes; nitrous oxide; Nitrous oxide; Nitrous oxide/δ15N ratio; Nitrous oxide/δ18O ratio; oxycline; Photometrical detection, Ferrozine method; Photometrical detection, Griess reagent method (Hansen and Koroleff 1999); Site preference, N2O; Spain; water column
    Type: Dataset
    Format: text/tab-separated-values, 179 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-12
    Description: We investigated the microbial and abiotic N2O cycle in the water column of iron-rich, meromictic Lake La Cruz, Spain, during two sampling campaigns in March 2015 and March 2017. At the deepest point of the lake, we used a profiling in situ analyzer equipped with several probes and optodes to detect physicochemical parameters. In addition, we collected water column samples via an in situ pump in order to analyze concentrations of N, S, and Fe species as well as isotope characteristics of several N species. In 2017, we used a Niskin bottle to take water samples from 8.0 and 14.5 m depth for two types of incubation experiments. In the first set of experiments, we added 15N-labeled substrates, and in some incubations Fe2+, to filtered and unfiltered lake water, and analyzed the produced N2O, N2, and NH4+. In the other experiment, we determined the N and O isotope effects of NO2- and N2O during chemodenitrification (reaction of NO2- and Fe2+) in anoxic and sterile lake water from 14.5 m depth.
    Keywords: 15N-tracer; anoxia; chemodenitrification; Denitrification; ferruginous; Lake_LaCruz; meromixis; MULT; Multiple investigations; N2O production rates; N2O site preference; nitrification; nitrifier denitrification; nitrogen isotopes; nitrous oxide; oxycline; Spain; water column
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-03-22
    Description: Upwelling systems are significant sources of atmospheric nitrous oxide (N₂O). The Benguela Upwelling System is one of the most productive regions worldwide and a temporally variable source of N₂O. Strong O₂ depletions above the shelf are favoring periodically OMZ formations. We aimed to assess underlying N₂O production and consumption processes on different temporal and spatial scales during austral winter in the Benguela Upwelling System, when O₂⁻deficiency in the water column is relatively low. The fieldwork took place during the cruise M157 (August 4ᵗʰ – September 16ᵗʰ 2019) onboard the R/V METEOR. This expedition included four close-coastal regions around Walvis Bay at 23°S, which presented the lowest O₂ concentrations near the seafloor and thus may provide hotspots of N₂O production. Seawater was collected in 10 L free-flow bottles by using a rosette system equipped with conductivity-temperature-depth (CTD) sensors (SBE 911plus, Seabird-electronics, USA).Seawater samples were collected from 10 L free-flow bottles bubble-free, filled into 200 mL serum bottles and immediately fixed with saturated mercury chloride (HgCl₂). Concentrations of dissolved N₂O were measured by a purge and trap system using a dynamic headspace (Sabbaghzadeh et al., 2021). The N₂O gas saturation (N₂Oₛₐₜ in %) was calculated from the concentration ratio between the seawater sample and seawater equilibrated with the atmosphere. ∆N₂O (N₂O saturation disequilibrium in nmol L⁻¹) was calculated as the difference between the measured N₂O concentration and the atmospheric equilibrium N₂O concentration using Bunsen solubility coefficient (Weiss and Price, 1980). AOU (apparent oxygen utilization in µmol L⁻¹) expresses the O₂ consumption by microbial respiration and was calculated as the difference between the equilibrated O₂ and observed O₂ concentration with the same physico-chemical properties (Weiss and Price, 1980).
    Keywords: apparent oxygen utilization; Benguela Upwelling System; BUSUC 1; Calculated according to Weiss and Price (1980); CTD, Sea-Bird SBE 911plus; CTD/Rosette; CTD-RO; DATE/TIME; DEPTH, water; Event label; Field observation; Gas chromatography, Agilent 7820B, coupled with a flame ionization detector and an Electron Capture Detector; LATITUDE; LONGITUDE; M157; M157_14-2; M157_16-3; M157_17-2; M157_2-8; Measured according to Sabbaghzadeh et al. (2021); Meteor (1986); Namibia; nitrous oxide; Nitrous oxide, dissolved; Nitrous oxide, dissolved, disequilibrium; Nitrous oxide, dry air; Nitrous oxide saturation; Oxygen, apparent utilization; oxygen minimum zone; Partial pressure of nitrous oxide in wet air; Sample code/label; Station label
    Type: Dataset
    Format: text/tab-separated-values, 332 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-03-22
    Description: Upwelling systems are significant sources of atmospheric nitrous oxide (N₂O). The Benguela Upwelling System is one of the most productive regions worldwide and a temporally variable source of N₂O. Strong O₂ depletions above the shelf are favoring periodically OMZ formations. We aimed to assess underlying N₂O production and consumption processes on different temporal and spatial scales during austral winter in the Benguela Upwelling System, when O₂-deficiency in the water column is relatively low. The fieldwork took place during the cruise M157 (August 4ᵗʰ – September 16ᵗʰ 2019) onboard the R/V METEOR. This expedition included four close-coastal regions around Walvis Bay at 23°S, which presented the lowest O₂ concentrations near the seafloor and thus may provide hotspots of N₂O production. Seawater was collected in 10 L free-flow bottles by using a rosette system equipped with conductivity-temperature-depth (CTD) sensors (SBE 911plus, Seabird-electronics, USA). Concentrations of inorganic nutrients (PO₄³⁻, NH₄⁺, NO₃⁻, NO₂⁻, and SiO₂) were measured colorimetrically according to Grasshoff et al. (1999) by means of a continuous segmented flow analyzer (SEAL Analytical, QuAAtro39). To determine the water mass fractions along the sampling transects, vertical profiles were collected using a free-falling microstructure profiler (MSS90L, Sea & Sun Technology). Temperature, dissolved oxygen, and salinity were measured with a CTD system consisting of a SeaBird 911+ probe, mounted on a sampling rosette.
    Keywords: Ammonium; Benguela Upwelling System; BUSUC 1; Continuous Segmented Flow Analyzer, SEAL Analytical, QuAAtro39; CTD, Sea-Bird SBE 911plus; CTD/Rosette; CTD-RO; DATE/TIME; DEPTH, water; Event label; Field observation; LATITUDE; LONGITUDE; M157; M157_10-7; M157_11-4; M157_12-2; M157_14-2; M157_16-25; M157_16-3; M157_16-6; M157_17-16; M157_17-2; M157_24-1; M157_25-1; M157_2-8; M157_28-1; M157_2-9; M157_36-2; M157_41-14; M157_42-2; M157_43-2; M157_43-6; M157_9-2; Meteor (1986); Microstructure profiler, Sea & Sun Technology, MSS90L; Namibia; Nitrate; Nitrite; nutrients; Oxygen; oxygen minimum zone; PCTD-RO; Phosphate; PumpCTD/Rosette; Salinity; Sample code/label; Silicate; Station label; Temperature, water; Water mass; water mass fraction
    Type: Dataset
    Format: text/tab-separated-values, 1660 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-04-20
    Description: Upwelling systems are significant sources of atmospheric nitrous oxide (N₂O). The Benguela Upwelling System is one of the most productive regions worldwide and a temporally variable source of N₂O. Strong O₂ depletions above the shelf are favoring periodically OMZ formations. We aimed to assess underlying N₂O production and consumption processes on different temporal and spatial scales during austral winter in the Benguela Upwelling System, when O₂-deficiency in the water column is relatively low. The fieldwork took place during the cruise M157 (August 4th – September 16th 2019) onboard the R/V METEOR. This expedition included four close-coastal regions around Walvis Bay at 23°S, which presented the lowest O₂ concentrations near the seafloor and thus may provide hotspots of N₂O production. Seawater was collected in 10 L free-flow bottles by using a rosette system equipped with conductivity-temperature-depth (CTD) sensors (SBE 911plus, Seabird-electronics, USA). Incubation experiments were performed using stable isotope ¹⁵N-tracers. Seawater samples for ¹⁵N-tracer incubations and natural abundance N₂O analysis were collected from 10 L free-flow bottles and filled bubble-free into 125 mL serum bottles. The samples for natural abundance N₂O analysis were immediately fixed with saturated HgCl₂ and stored in the dark. To perform the incubation, we added ¹⁵N-labeled NO₂-, NO₃⁻ and NH₄⁺ to estimate the in-situ N₂O production rates and associated reactions. To determine a single rate, the bottles were sacrificed after tracer addition, and within the time interval of 12 h, 24 h and 48 h by adding HgCl₂. Rates were calculated based on a linear regression over time. Total N₂O and natural abundance isotopologues of N₂O were analyzed by using an isotope ratio mass spectrometer (IRMS, Delta V Plus, Thermo Scientific). NO₂- production was additionally analyzed by transforming ¹⁵NO₂- to ¹⁵N₂O following the azide method after McIlvin & Altabet (2005) and the nitrogen isotope ratio of N₂O was measured by an IRMS. N₂ production was determined via an IRMS (Flash-EA-ConfloIV-DELTA V Advanced, Thermo Scientific) by injecting headspace from exetainers. The N₂O yield per nitrite produced and the N₂O yield during denitrification was calculated. Samples for natural abundance N₂O was sampled and measured in triplicates and is shown as an average with standard deviation (SD). In order to estimate the contribution of different N₂O producing pathways by major biological processes and the extent of N₂O reduction to N₂, the dual-isotope mapping approach was applied to natural abundance isotopologues of N₂O, which uses the relative position of background-subtracted N₂O samples in a δ¹⁵Nˢᴾ-N₂O vs. δ¹⁸O-N₂O diagram (Yu et al., 2020; Lewicka-Szczebak et al., 2020).
    Keywords: 15N-tracer; Ammonium, oxidation rate; Ammonium, oxidation rate, limit of detection; Ammonium, oxidation rate, standard error; ammonium oxidation; Anammox rate; Anammox rate, standard error; Benguela Upwelling System; BUSUC 1; Calculated; CTD/Rosette; CTD-RO; DATE/TIME; Denitrification; Denitrification rate, standard error; DEPTH, water; Event label; Field observation; Gas Chromatograph (GC), Manufacturer unknown, custom built; coupled with Isotope Ratio Mass Spectrometer (IRMS), Thermo Scientific, Delta V Plus; Isotope Ratio Mass Spectrometer (IRMS), Thermo Scientific, Delta V Advantage [Conflo IV interface]; LATITUDE; LONGITUDE; M157; M157_14-14; M157_16-25; M157_17-16; M157_2-9; Meteor (1986); N2O production rates; Namibia; Nitrate, reduction rate; Nitrate, reduction rate, limit of detection; Nitrate, reduction rate, standard error; nitrate reduction; nitrification; Nitrous oxide, limit of detection; Nitrous oxide, yield; Nitrous oxide production; Nitrous oxide production, standard error; oxygen minimum zone; Sample code/label; Site preference, N2O; Site preference, N2O, standard deviation; Stable isotope; Station label; δ15N, nitrous oxide; δ15N, nitrous oxide, standard deviation; δ15N-alpha, nitrous oxide; δ15N-alpha, nitrous oxide, standard deviation; δ15Nbeta, nitrous oxide; δ15Nbeta, nitrous oxide, standard deviation; δ18O, nitrous oxide; δ18O, nitrous oxide, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 801 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...