ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
Years
  • 1
    Publication Date: 2022-03-21
    Description: Characterizing the temporal uncertainty in palaeoclimate records is crucial for analysing past climate change, correlating climate events between records, assessing climate periodicities, identifying potential triggers and evaluating climate model simulations. The first global compilation of speleothem isotope records by the SISAL (Speleothem Isotope Synthesis and Analysis) working group showed that age model uncertainties are not systematically reported in the published literature, and these are only available for a limited number of records (ca. 15 %, n=107/691). To improve the usefulness of the SISAL database, we have (i) improved the database's spatio-temporal coverage and (ii) created new chronologies using seven different approaches for age–depth modelling. We have applied these alternative chronologies to the records from the first version of the SISAL database (SISALv1) and to new records compiled since the release of SISALv1. This paper documents the necessary changes in the structure of the SISAL database to accommodate the inclusion of the new age models and their uncertainties as well as the expansion of the database to include new records and the quality-control measures applied. This paper also documents the age–depth model approaches used to calculate the new chronologies. The updated version of the SISAL database (SISALv2) contains isotopic data from 691 speleothem records from 294 cave sites and new age–depth models, including age–depth temporal uncertainties for 512 speleothems. SISALv2 is available at https://doi.org/10.17864/1947.256 (Comas-Bru et al., 2020a).
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-12
    Description: We present the first high-resolution trace element (Mg/Ca, Sr/Ca, Ba/Ca) record from a stalagmite in southwestern Romania covering the last 3.6 ka, which provides the potential for quantitative climate reconstruction. Precise age control is based on three independent dating methods, in particular for the last 250 yr, where chemical lamina counting is combined with the identification of the 20th century radiocarbon bomb peak and 230Th/U dating. Long-term cave monitoring and model simulations of drip water and speleothem elemental variability indicate that precipitation-related processes are the main drivers of speleothem Mg/Ca ratios. Calibration against instrumental climate data shows a significant anti-correlation of speleothem Mg/Ca ratios with autumn/winter (October to March) precipitation (r = −0.61, p 〈 0.01), which is statistically robust when considering age uncertainties and auto-correlation. This relationship is used to develop a quantitative reconstruction of autumn/winter precipitation. During the late Holocene, our data suggest a heterogeneous pattern of past regional winter hydroclimate in the Carpathian/Balkan realm, along with intermittent weakening of the dominant influence of North Atlantic forcing. In agreement with other regional paleo-hydrological reconstructions, the observed variability reveals periodically occurring strong NW–SE hydro-climate gradients. We hypothesize, that this pattern is caused by shifts of the eastern edge of the area of influence of the NAO across central-eastern Europe due to the confluence of North Atlantic forcing, and other climatic features such as the East Atlantic/Western Russia (EAWR) pattern.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-05
    Description: Hydrogen (δ2H) and oxygen (δ18O) isotopes of water extracted from speleothem fluid inclusions are important proxies used for paleoclimate reconstruction. In our study we use a cavity ring-down laser spectroscopy system for analysis and modified the approach of Affolter et al. (2014) for sample extraction. The method is based on crushing of small sub-gram speleothem samples in a heated and continuously water-vapour purged extraction line. The following points were identified: Injection of reference water shows a precision (1σ) of 0.4–0.5 ‰ for δ18O values and 1.1–1.9 ‰ for δ2H values for water amounts of 0.1–0.5 μl, which improves with increasing water amount to 0.1–0.3 ‰ and 0.2–0.7 ‰, respectively, above 1 μl. The accuracy of measurements of water injections and water-filled glass capillaries crushed in the system is better than 0.08 ‰ for δ18O and 0.3 ‰ for δ2H values. The reproducibility (1σ) based on replicate analysis of speleothem fluid inclusion samples with water amounts 〉0.2 μl is 0.5 ‰ for δ18O and 1.2 ‰ for δ2H values, respectively. Isotopic differences between the water vapour background of the extraction system and the fluid inclusions have no significant impact on the measured fluid inclusion isotope values if they are within 10 ‰ for δ18O and 50 ‰ for δ2H values of the background. Tests of potential adsorption effects with inclusion free spar calcite confirm that the isotope values are unaffected by adsorption for water contents of about 1 μl (fluid inclusion) water per g of carbonate or above. Fluid inclusion analysis on three different modern to late Holocene speleothems from caves in northwest Germany resulted in δ18O and δ2H values that follow the relationship as defined by the meteoric water line and that correspond to the local drip water. Yet, due to potential isotope exchange reactions for oxygen atoms, hydrogen isotope measurements are preferentially to be used for temperature reconstructions. We demonstrate this in a case study with a Romanian stalagmite, for which we reconstruct the 20th century warming with an amplitude of approximately 1 °C, with a precision for each data point of better than ±0.5 °C.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...