ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Language
  • 1
    Publication Date: 2010-08-01
    Print ISSN: 0016-7037
    Electronic ISSN: 1872-9533
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-11-20
    Description: Here we explore the potential of magnesium (δ26Mg) isotope time-series data as continental climate proxies in speleothem calcite archives. For this purpose, a total of six Pleistocene and Holocene stalagmites from caves in Germany, Morocco and Peru and two flowstones from a cave in Austria were investigated. These caves represent the semi-arid to arid (Morocco), the warm-temperate (Germany), the equatorial-humid (Peru) and the cold-humid (Austria) climate zones. Changes in the calcite magnesium isotope signature with time are compared against carbon and oxygen isotope records from these speleothems. Similar to other proxies, the non-trivial interaction of a number of environmental, equilibrium and disequilibrium processes governs the δ26Mg fractionation in continental settings. These include the different sources of magnesium isotopes such as rainwater or snow as well as soil and host rock, soil zone biogenic activity, shifts in silicate versus carbonate weathering ratios and residence time of water in the soil and karst zone. Pleistocene stalagmites from Morocco show the lowest mean δ26Mg values (GDA: −4.26 ± 0.07‰ and HK3: −4.17 ± 0.15‰), and the data are well explained in terms of changes in aridity over time. The Pleistocene to Holocene stalagmites from Peru show the highest mean value of all stalagmites (NC-A and NC-B δ26Mg: −3.96 ± 0.04‰) but only minor variations in Mg-isotope composition, which is consistent with the rather stable equatorial climate at this site. Holocene stalagmites from Germany (AH-1 mean δ26Mg: −4.01 ± 0.07‰; BU 4 mean δ26Mg: −4.20 ± 0.10‰) suggest changes in outside air temperature was the principal driver rather than rainfall amount. The alpine Pleistocene flowstones from Austria (SPA 52: −3.00 ± 0.73‰; SPA 59: −3.70 ± 0.43‰) are affected by glacial versus interglacial climate change with outside air temperature affecting soil zone activity and weathering balance. Several δ26Mg values of the Austrian and two δ26Mg values of the German speleothems are shifted to higher values due to sampling in detrital layers (Mg-bearing clay minerals) of the speleothems. The data and their interpretation shown here highlight the potential but also the limitations of the magnesium isotope proxy applied in continental climate research. An obvious potential lies in its sensitivity for even subtle changes in soil-zone parameters, a hitherto rather poorly understood but extremely important component in cave archive research. Limitations are most obvious in the low resolution and high sample amount needed for analysis. Future research should focus on experimental and conceptual aspects including quantitative and well-calibrated leaching and precipitation experiments.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-10-31
    Description: Holocene climate was characterised by variability on multi-centennial to multi-decadal time scales. In central Europe, these fluctuations were most pronounced during winter. Here we present a record of past winter climate variability for the last 10.8 ka based on four speleothems from Bunker Cave, western Germany. Due to its central European location, the cave site is particularly well suited to record changes in precipitation and temperature in response to changes in the North Atlantic realm. We present high-resolution records of δ18O, δ13C values and Mg/Ca ratios. Changes in the Mg/Ca ratio are attributed to past meteoric precipitation variability. The stable C isotope composition of the speleothems most likely reflects changes in vegetation and precipitation, and variations in the δ18O signal are interpreted as variations in meteoric precipitation and temperature. We found cold and dry periods between 8 and 7 ka, 6.5 and 5.5 ka, 4 and 3 ka as well as between 0.7 and 0.2 ka. The proxy signals in the Bunker Cave stalagmites compare well with other isotope records and, thus, seem representative for central European Holocene climate variability. The prominent 8.2 ka event and the Little Ice Age cold events are both recorded in the Bunker Cave record. However, these events show a contrasting relationship between climate and δ18O, which is explained by different causes underlying the two climate anomalies. Whereas the Little Ice Age is attributed to a pronounced negative phase of the North Atlantic Oscillation, the 8.2 ka event was triggered by cooler conditions in the North Atlantic due to a slowdown of the thermohaline circulation.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-02-14
    Description: The geochemical signature of many speleothems used for reconstruction of past continental climates is affected by kinetic isotope fractionation. This limits quantitative paleoclimate reconstruction and, in cases where the kinetic fractionation varies with time, also affects relative paleoclimate interpretations. In carbonate archive research, clumped isotope thermometry is typically used as proxy for absolute temperatures. In the case of speleothems, however, clumped isotopes provide a sensitive indicator for disequilibrium effects. The extent of kinetic fractionation co-varies in Δ47 and δ18O so that it can be used to account for disequilibrium in δ18O and to extract the past drip-water composition. Here we apply this approach to stalagmites from Bunker Cave (Germany) and calculate drip-water δ18Ow values for the Eemian, MIS3, and the Holocene, relying on independent temperature estimates and accounting for disequilibrium. Applying the co-variation method to modern calcite precipitates yields drip-water δ18Ow values in agreement with modern cave drip-water δ18Ow of −7.9 ± 0.3‰, despite large and variable disequilibrium effects in both calcite δ18Oc and Δ47. Reconstructed paleo-drip-water δ18Ow values are lower during colder periods (e.g., MIS3: −8.6 ± 0.4‰ and the early Holocene at 11 ka: −9.7 ± 0.2‰) and show higher values during warmer climatic periods (e.g., the Eemian: −7.6 ± 0.2‰ and the Holocene Climatic Optimum: −7.2 ± 0.3‰). This new approach offers a unique possibility for quantitative climate reconstruction including the assessment of past hydrological conditions while accounting for disequilibrium effects.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-07-24
    Description: The geochemical signature of many speleothems used for reconstruction of past continental climates is affected by kinetic isotope fractionation. This limits quantitative paleoclimate reconstruction and, in cases where the kinetic fractionation varies with time, also affects relative paleoclimate interpretations. In carbonate archive research, clumped isotope thermometry is typically used as proxy for absolute temperatures. In the case of speleothems, however, clumped isotopes provide a sensitive indicator for disequilibrium effects. The extent of kinetic fractionation co-varies in Δ47 and δ18O so that it can be used to account for disequilibrium in δ18O and to extract the past drip-water composition. Here we apply this approach to stalagmites from Bunker Cave (Germany) and calculate drip-water δ18Ow values for the Eemian, Marine Isotope Stage (MIS) 3, and the Holocene, relying on independent temperature estimates and accounting for disequilibrium. Applying the co-variation method to modern calcite precipitates yields drip-water δ18Ow values in agreement with modern cave drip-water δ18Ow of −7.9 ± 0.3‰, despite large and variable disequilibrium effects in both calcite δ18Oc and Δ47. Reconstructed paleo-drip-water δ18Ow values are lower during colder periods (e.g., MIS 3: −8.5 ± 0.4‰ and the early Holocene at 11 kyr: −9.3 ± 0.1‰) and show higher values during warmer climatic periods (e.g., the Eemian: −7.5 ± 0.2‰ and the Holocene Climatic Optimum: −7.2 ± 0.3‰). This new approach offers a unique possibility for quantitative climate reconstruction including the assessment of past hydrological conditions while accounting for disequilibrium effects.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-05-11
    Description: Holocene climate was characterised by variability on multi-centennial to multi-decadal time scales. In central Europe, these fluctuations were most pronounced during winter. Here we present a new record of past winter climate variability for the last 10.8 ka based on four speleothems from Bunker Cave, Western Germany. Due to its central European location, the cave site is particularly well suited to record changes in precipitation and temperature in response to changes in the North Atlantic realm. We present high resolution records of δ18O, δ13C values and Mg/Ca ratios. We attribute changes in the Mg/Ca ratio to variations in the meteoric precipitation. The stable C isotope composition of the speleothems most likely reflects changes in vegetation and precipitation and variations in the δ18O signal are interpreted as variations in meteoric precipitation and temperature. We found cold and dry periods between 9 and 7 ka, 6.5 and 5.5 ka, 4 and 3 ka as well as between 0.7 to 0.2 ka. The proxy signals in our stalagmites compare well with other isotope records and, thus, seem representative for central European Holocene climate variability. The prominent 8.2 ka event and the Little Ice Age cold events are both recorded in the Bunker cave record. However, these events show a contrasting relationship between climate and δ18O, which is explained by different causes underlying the two climate anomalies. Whereas the Little Ice Age is attributed to a pronounced negative phase of the North Atlantic Oscillation, the 8.2 ka event was triggered by cooler conditions in the North Atlantic due to a slowdown of the Thermohaline Circulation.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-05-22
    Description: Here we explore the potential of time-series magnesium (δ26Mg) isotope data as continental climate proxies in speleothem calcite archives. For this purpose, a total of six Pleistocene and Holocene stalagmites from caves in Germany, Morocco and Peru and two flowstones from a cave in Austria were investigated. These caves represent the semi-arid to arid (Morocco), the warm-temperate (Germany), the equatorial-humid (Peru) and the cold-humid (Austria) climate zones. Changes in the calcite magnesium isotope signature with time are placed against carbon and oxygen isotope records from these speleothems. Similar to other proxies, the non-trivial interaction of a number of environmental, equilibrium and non-equilibrium processes governs the δ26Mg fractionation in continental settings. These include the different sources of magnesium isotopes such as rain water or snow as well as soil and hostrock, soil zone biogenic activity, shifts in silicate versus carbonate weathering ratios and residence time of water in the soil and karst zone. Pleistocene stalagmites from Morocco show the lowest mean δ26Mg values (GDA: −4.26 ± 0.07 ‰ and HK3: −4.17 ± 0.15 ‰) and the data are well explained in terms of changes in aridity over time. The Pleistocene to Holocene stalagmites from Peru show the highest mean value (NC-A and NC-B δ26Mg: −3.96 ± 0.04 ‰) but only minor variations in Mg-isotope composition, which is in concert with the rather stable equatorial climate at this site. Holocene stalagmites from Germany (AH-1 mean δ26Mg: −4.01 ± 0.07 ‰; BU 4 mean δ26Mg: −4.20 ± 0.10 ‰) record changes in outside air temperature as driving factor rather than rainfall amount. The alpine Pleistocene flowstones from Austria (SPA 52: −3.00 ± 0.73 ‰; SPA 59: −3.70 ± 0.43 ‰) are affected by glacial versus interglacial climate change with outside air temperature affecting soil zone activity and weathering balance. Several data points in the Austrian and two data points in the German speleothems are shifted to higher values due to sampling in detrital layers (Mg-bearing clay minerals) of the speleothems. The data and their interpretation shown here highlight the potential but also the limitations of the magnesium isotope proxy applied in continental climate research. An obvious potential lies in its sensitivity for even subtle changes in soil-zone parameters, a hitherto rather poorly understood but extremely important component in cave archive research. Limitations are most obvious in the low resolution and high sample amount needed for analysis. Future research should focus on experimental and conceptual aspects including quantitative and well calibrated leaching and precipitation experiments.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-23
    Description: We present a magnesium (Mg) and strontium (Sr) record from an aragonitic speleothem (Grotte de Piste, Morocco, 34‬°N; 04°W) providing a reconstruction of effective rainfall from 619 to 1962 AD. The corresponding drip site was monitored over 2 yr for drip water Mg/Ca and Sr/Ca ratios. Results show evidence for prior aragonite precipitation, which can explain negative correlations between speleothem Mg and Sr concentrations. The data shown here have important climate implications concerning the evolution of the North Atlantic Oscillation (NAO). A comparison of the stalagmite data from Grotte de Piste with an updated tree ring based drought reconstruction from Morocco and other NAO related proxy records confirms that the Medieval Warm Period (MWP) was dominated by NAO+ conditions. The stalagmite record and multiple proxy records from the Iberian Peninsula, however, suggest that considerable rainfall variability occurred during the MWP. This implies that the NAO has been more variable during the MWP than formerly suggested.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-03-21
    Description: Two small annually laminated stalagmites from Zoolithencave (southeastern Germany) grew between CE 1821 and 1970 (Zoo‐rez‐1) and CE 1835 and 1970 (Zoo‐rez‐2), respectively. Trace element concentrations were determined by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA‐ICP‐MS). Samples for δ13C and δ18O analyses were micromilled on annual and subannual resolution. Soil and host rock samples were analyzed by X‐Ray Diffraction (XRD) and their elemental concentrations determined via inductively coupled plasma optical emission spectrometer (ICP‐OES). Trace element concentrations in the stalagmites show two groups in the principal component analyses: one with Mg, Ba, and Sr and another with Y, P, and Al, respectively. The second group reflects the content of detrital material. Increased weathering of soil minerals seems to have a strong influence on the silicate/carbonate weathering ratio controlling the variability of Mg, Ba, and Sr. Meteorological and Global Network of Isotopes in Precipitation (GNIP) station data were used to calculate the δ18O values of the drip water (infiltration‐weighted, mean annual, and the mean of the winter precipitation δ18O values) as well as the corresponding speleothem calcite. The δ18O values calculated by the infiltration‐weighted model show similar patterns and amplitudes as the measured δ18O values of the two stalagmites. This suggests that the δ18O values of speleothem calcite reflect the δ18O values of infiltration‐weighted annual precipitation, which zis related to mean annual temperature, resulting in a significant correlation between mean annual temperature and the measured δ18O values of stalagmite Zoo‐rez‐2. This relationship could potentially be used for quantitative climate reconstruction in the future by extending the time series back in time with further stalagmites from Zoolithencave.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-03-21
    Description: The Late Holocene was characterized by several centennial-scale climate oscillations including the Roman Warm Period, the Dark Ages Cold Period, the Medieval Warm Period and the Little Ice Age. The detection and investigation of such climate anomalies requires paleoclimate archives with an accurate chronology as well as a high temporal resolution. Here, we present 230Th/U-dated high-resolution multi-proxy records (δ13C, δ18O and trace elements) for the last 2500 years of four speleothems from Bunker Cave and the Herbstlabyrinth cave system in Germany. The multi-proxy data of all four speleothems show evidence of two warm and two cold phases during the last 2500 years, which coincide with the Roman Warm Period and the Medieval Warm Period, as well as the Dark Ages Cold Period and the Little Ice Age, respectively. During these four cold and warm periods, the δ18O and δ13C records of all four speleothems and the Mg concentration of the speleothems Bu4 (Bunker Cave) and TV1 (Herbstlabyrinth cave system) show common features and are thus interpreted to be related to past climate variability. Comparison with other paleoclimate records suggests a strong influence of the North Atlantic Oscillation at the two caves sites, which is reflected by warm and humid conditions during the Roman Warm Period and the Medieval Warm Period, and cold and dry climate during the Dark Ages Cold period and the Little Ice Age. The Mg records of speleothems Bu1 (Bunker Cave) and NG01 (Herbstlabyrinth) as well as the inconsistent patterns of Sr, Ba and P suggests that the processes controlling the abundance of these trace elements are dominated by site-specific effects rather than being related to supra-regional climate variability.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...