ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-12
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-05-28
    Description: Habitat loss, overexploitation, and numerous other stressors have caused global declines in apex predators. This "trophic downgrading" has generated widespread concern because of the fundamental role that apex predators can play in ecosystem functioning, disease regulation, and biodiversity maintenance. In attempts to combat declines, managers have conducted reintroductions, imposed stricter harvest regulations, and implemented protected areas. We suggest that full recovery of viable apex predator populations is currently the exception rather than the rule. We argue that, in addition to well-known considerations, such as continued exploitation and slow life histories, there are several underappreciated factors that complicate predator recoveries. These factors include three challenges. First, a priori identification of the suite of trophic interactions, such as resource limitation and competition that will influence recovery can be difficult. Second, defining and accomplishing predator recovery in the context of a dynamic ecosystem requires an appreciation of the timing of recovery, which can determine the relative density of apex predators and other predators and therefore affect competitive outcomes. Third, successful recovery programs require designing adaptive sequences of management strategies that embrace key environmental and species interactions as they emerge. Consideration of recent research on food web modules, alternative stable states, and community assembly offer important insights for predator recovery efforts and restoration ecology more generally. Foremost among these is the importance of a social-ecological perspective in facilitating a long-lasting predator restoration while avoiding unintended consequences.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-09-01
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-06-06
    Description: Indices of abundance are the bedrock for stock assessments or empirical management procedures used to manage fishery catches for fish populations worldwide, and are generally obtained by processing catch-rate data. Recent research suggests that geostatistical models can explain a substantial portion of variability in catch rates via the location of samples (i.e. whether located in high- or low-density habitats), and thus use available catch-rate data more efficiently than conventional "design-based" or stratified estimators. However, the generality of this conclusion is currently unknown because geostatistical models are computationally challenging to simulation-test and have not previously been evaluated using multiple species. We develop a new maximum likelihood estimator for geostatistical index standardization, which uses recent improvements in estimation for Gaussian random fields. We apply the model to data for 28 groundfish species off the U.S. West Coast and compare results to a previous "stratified" index standardization model, which accounts for spatial variation using post-stratification of available data. This demonstrates that the stratified model generates a relative index with 60% larger estimation intervals than the geostatistical model. We also apply both models to simulated data and demonstrate (i) that the geostatistical model has well-calibrated confidence intervals (they include the true value at approximately the nominal rate), (ii) that neither model on average under- or overestimates changes in abundance, and (iii) that the geostatistical model has on average 20% lower estimation errors than a stratified model. We therefore conclude that the geostatistical model uses survey data more efficiently than the stratified model, and therefore provides a more cost-efficient treatment for historical and ongoing fish sampling data.
    Print ISSN: 1054-3139
    Electronic ISSN: 1095-9289
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-02-21
    Description: The impact of stored water on estimates of transpiration from scaled sap flux measurements was assessed in mature Pinus taeda (L.) at the Duke Free-Air CO 2 Enrichment (FACE) site. We used a simple hydraulic model with measurements of sap flux ( J ) at breast height and the base of the live crown for 26 trees over 6 months to examine the effects of elevated CO 2 (eCO 2 ) and fertilization (N F ) treatments, as well as temporal variation in soil moisture ( M ( t ) ), on estimates of the hydraulic time constant (). At low M ( t ) , there was little (〈12%) difference in of different treatments. At high M ( t ) , differences were much greater, with reductions of 27, 52 and 34% in eCO 2 , N F and eCO 2 x N F respective to the control. Incorporating with these effects into the analysis of a larger data set of previous J measurements at this site (1998–2008) improved agreement between modeled and measured values in 92% of cases. However, a simplified calibration of that neglected treatment and soil moisture effects performed more dependably, improving agreement in 98% of cases. Incorporating had the effect of increasing estimates of reference stomatal conductance at 1 kPa vapor pressure deficit (VPD) and saturating photosynthetic active radiation (PAR) an average of 12–14%, while increasing estimated sensitivities to VPD and PAR. A computationally efficient hydraulic model, such as the one presented here, incorporated into a hierarchical model of stomatal conductance presents a novel approach to including hydraulic time constants in estimates of stomatal responses from long-term sap flux data sets.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-02-21
    Description: In this study, we employ a network of thermal dissipation probes (TDPs) monitoring sap flux density to estimate leaf-specific transpiration ( E L ) and stomatal conductance ( G S ) in Pinus taeda (L.) and Liquidambar styraciflua L. exposed to +200 ppm atmospheric CO 2 levels (eCO 2 ) and nitrogen fertilization. Scaling half-hourly measurements from hundreds of sensors over 11 years, we found that P. taeda in eCO 2 intermittently (49% of monthly values) decreased stomatal conductance ( G S ) relative to the control, with a mean reduction of 13% in both total E L and mean daytime G S . This intermittent response was related to changes in a hydraulic allometry index ( A H ), defined as sapwood area per unit leaf area per unit canopy height, which decreased a mean of 15% with eCO 2 over the course of the study, due mostly to a mean 19% increase in leaf area ( A L ). In contrast, L. styraciflua showed a consistent (76% of monthly values) reduction in G S with eCO 2 with a total reduction of 32% E L , 31% G S and 23% A H (due to increased A L per sapwood area). For L. styraciflua , like P. taeda , the relationship between A H and G S at reference conditions suggested a decrease in G S across the range of A H . Our findings suggest an indirect structural effect of eCO 2 on G S in P. taeda and a direct leaf level effect in L. styraciflua . In the initial year of fertilization, P. taeda in both CO 2 treatments, as well as L. styraciflua in eCO 2 , exhibited higher G S with N F than expected from shifts in A H , suggesting a transient direct effect on G S . Whether treatment effects on mean leaf-specific G S are direct or indirect, this paper highlights that long-term treatment effects on G S are generally reflected in A H as well.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-04-06
    Description: In their PNAS article, Joel et al. (1) demonstrate extensive overlap between the distributions of females and males for many brain characteristics, measured across multiple neuroimaging modalities and datasets. They pose two requirements for categorizing brains into distinct male/female classes: (i) gender differences should appear as dimorphic form differences between...
    Keywords: Letters
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-08-28
    Description: Linguistic labels (e.g., “chair”) seem to activate visual properties of the objects to which they refer. Here we investigated whether language-based activation of visual representations can affect the ability to simply detect the presence of an object. We used continuous flash suppression to suppress visual awareness of familiar objects while...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-07-28
    Description: Uncertainties in ecophysiological responses to environment, such as the impact of atmospheric and soil moisture conditions on plant water regulation, limit our ability to estimate key inputs for ecosystem models. Advanced statistical frameworks provide coherent methodologies for relating observed data, such as stem sap flux density, to unobserved processes, such as canopy conductance and transpiration. To address this need, we developed a hierarchical Bayesian State-Space Canopy Conductance (StaCC) model linking canopy conductance and transpiration to tree sap flux density from a 4-year experiment in the North Carolina Piedmont, USA. Our model builds on existing ecophysiological knowledge, but explicitly incorporates uncertainty in canopy conductance, internal tree hydraulics and observation error to improve estimation of canopy conductance responses to atmospheric drought (i.e., vapor pressure deficit), soil drought (i.e., soil moisture) and above canopy light. Our statistical framework not only predicted sap flux observations well, but it also allowed us to simultaneously gap-fill missing data as we made inference on canopy processes, marking a substantial advance over traditional methods. The predicted and observed sap flux data were highly correlated (mean sensor-level Pearson correlation coefficient = 0.88). Variations in canopy conductance and transpiration associated with environmental variation across days to years were many times greater than the variation associated with model uncertainties. Because some variables, such as vapor pressure deficit and soil moisture, were correlated at the scale of days to weeks, canopy conductance responses to individual environmental variables were difficult to interpret in isolation. Still, our results highlight the importance of accounting for uncertainty in models of ecophysiological and ecosystem function where the process of interest, canopy conductance in this case, is not observed directly. The StaCC modeling framework provides a statistically coherent approach to estimating canopy conductance and transpiration and propagating estimation uncertainty into ecosystem models, paving the way for improved prediction of water and carbon uptake responses to environmental change.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...