ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-02-21
    Description: In this study, we employ a network of thermal dissipation probes (TDPs) monitoring sap flux density to estimate leaf-specific transpiration ( E L ) and stomatal conductance ( G S ) in Pinus taeda (L.) and Liquidambar styraciflua L. exposed to +200 ppm atmospheric CO 2 levels (eCO 2 ) and nitrogen fertilization. Scaling half-hourly measurements from hundreds of sensors over 11 years, we found that P. taeda in eCO 2 intermittently (49% of monthly values) decreased stomatal conductance ( G S ) relative to the control, with a mean reduction of 13% in both total E L and mean daytime G S . This intermittent response was related to changes in a hydraulic allometry index ( A H ), defined as sapwood area per unit leaf area per unit canopy height, which decreased a mean of 15% with eCO 2 over the course of the study, due mostly to a mean 19% increase in leaf area ( A L ). In contrast, L. styraciflua showed a consistent (76% of monthly values) reduction in G S with eCO 2 with a total reduction of 32% E L , 31% G S and 23% A H (due to increased A L per sapwood area). For L. styraciflua , like P. taeda , the relationship between A H and G S at reference conditions suggested a decrease in G S across the range of A H . Our findings suggest an indirect structural effect of eCO 2 on G S in P. taeda and a direct leaf level effect in L. styraciflua . In the initial year of fertilization, P. taeda in both CO 2 treatments, as well as L. styraciflua in eCO 2 , exhibited higher G S with N F than expected from shifts in A H , suggesting a transient direct effect on G S . Whether treatment effects on mean leaf-specific G S are direct or indirect, this paper highlights that long-term treatment effects on G S are generally reflected in A H as well.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...