ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2011-10-26
    Description: A data set of ground based tropospheric NO2 column observations from De Bilt, the Netherlands, has been compared with the regional air quality model Lotos-Euros. The size of the data set (355 days spread over 14 months, 2106 hourly averages) enables statistically significant conclusions, despite a strong variability in both data sets, and allows to study the seasonal, weekly and diurnal variability and dependence on meteorological variables. The model was run on a 7×7 km grid, and based on an emission data base with the same resolution. With this resolution the model is able to resolve the major sources in the neighborhood of the measurement location. Since for the largest part the observations were performed under cloudy conditions, a retrieval study was done to assess the effect of clouds on the retrieval accuracy. It was found that the sensitivity to NO2 in the boundary layer is almost unchanged by clouds, provided that the cloud bottom height is above the NO2 and that a viewing elevation angle is used of 30° above the horizon. Partially cloudy conditions, even when above the NO2, may have a significant positive or negative impact on individual measurements, but when averaged over time do not cause a significant bias. In general a good agreement was found between modeled and measured tropospheric NO2 columns, with an average difference of less than 1% of the average tropospheric column (14.5 · 10 15 molec cm−2). This holds for both the cloud covered and cloud free observations, and the comparisons show very little cloud cover dependence after the cloud corrections. Hourly differences between observations and model show a Gaussian behavior with a standard deviation σ = 5.5 · 1015 molec cm−2. For daily averages of tropospheric NO2 columns, a correlation 0.72 was found for all observations, and 0.79 for cloud free conditions. The measured and modeled tropospheric NO2 columns have an almost identical distribution over the wind directions, when averaged over 12 sectors of 30°. A significant difference between model and measurements was found for the average weekly cycle, which shows a much stronger decrease in the weekend for the observations, and for the diurnal cycle, for which the observed range is about twice as large as the modeled range. In addition the observations show a decrease with increasing temperature, whereas the model shows no dependency on the temperature for this data set which did not include summer months. The results of the comparison demonstrate that averaged over a long time period, the tropospheric NO2 column observations are representative for a large spatial area despite the fact that they were obtained in an urban region. This makes the MAX-DOAS technique, more than in situ techniques, especially suitable for validation of satellite observations and air quality models in urban regions.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-09-19
    Description: A four year data set of MAX-DOAS observations in the Beijing area (2008–2012) is analysed with a focus on NO2, HCHO, and aerosols. Two very different retrieval methods are applied. Method A describes the tropospheric profile with 13 layers and makes use of the optimal estimation method. Method B uses 2–4 parameters to describe the tropospheric profile and an inversion based on a least-squares fit. For each constituent (NO2, HCHO and aerosols) the retrieval outcomes are compared in terms of tropospheric columns, surface concentrations, and "characteristic profile heights" (i.e. the height below which 75% of the vertically integrated tropospheric column resides). We find best agreement between the two methods for tropospheric NO2 columns, with a standard deviation of relative differences below 10%, a correlation of 0.99 and a linear regression with a slope of 1.03. For tropospheric HCHO columns we find a similar slope, but also a systematic bias of almost 10% which is likely related to differences in profile height. Aerosol optical depths (AODs) retrieved with method B are 20% high compared to method A. They are more in agreement with AERONET measurements, which are on average only 5% lower, however with considerable relative differences (standard deviation ~25%). With respect to near surface volume mixing ratios and aerosol extinction we find considerably larger relative differences: 10 ± 30%, −23 ± 28% and −8 ± 33% for aerosols, HCHO and NO2 respectively. The frequency distributions of these near-surface concentrations show however a quite good agreement, and this indicates that near-surface concentrations derived from MAX-DOAS are certainly useful in a climatological sense. A major difference between the two methods is the dynamic range of retrieved characteristic profile heights which is larger for method B than for method A. This effect is most pronounced for HCHO, where retrieved profile shapes with method A are very close to the a priori, and moderate for NO2 and aerosols which on average show quite good agreement for characteristic profile heights below 1.5 km. One of the main advantages of method A is the stability, even under suboptimal conditions (e.g., in the presence of clouds). Method B is generally more unstable and this explains probably a substantial part of the quite large relative differences between the two methods. However, despite a relatively low precision for individual profile retrievals it appears as if seasonally averaged profile heights retrieved with method B are less biased towards a priori assumptions than those retrieved with method A. This gives confidence in the result obtained with method B, namely that aerosol profiles tend on average to be higher than NO2 profiles in spring and summer, whereas they seem on average to be of the same height in winter, a result which is especially relevant in relation to the validation of satellite retrievals.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2010-08-13
    Description: In June 2009, 22 spectrometers from 14 institutes measured tropospheric and stratospheric NO2 from the ground for more than 11 days during the Cabauw Intercomparison campaign of Nitrogen Dioxide measuring Instruments (CINDI), at Cabauw, NL (51.97° N, 4.93° E). All visible instruments used a common wavelength range and set of cross sections for the spectral analysis. Most of the instruments were of the multi-axis design with analysis by differential spectroscopy software (MAX-DOAS), whose non-zenith slant columns were compared by examining slopes of their least-squares straight line fits to mean values of a selection of instruments, after taking 30-min averages. Zenith slant columns near twilight were compared by fits to interpolated values of a reference instrument, then normalised by the mean of the slopes of the best instruments. For visible MAX-DOAS instruments, the means of the fitted slopes for NO2 and O4 of all except one instrument were within 10% of unity at almost all non-zenith elevations, and most were within 5%. Values for UV MAX-DOAS instruments were almost as good, being 12% and 7%, respectively. For visible instruments at zenith near twilight, the means of the fitted slopes of all instruments were within 5% of unity. This level of agreement is as good as that of previous intercomparisons, despite the site not being ideal for zenith twilight measurements. It bodes well for the future of measurements of tropospheric NO2, as previous intercomparisons were only for zenith instruments focussing on stratospheric NO2, with their longer heritage.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-09-16
    Description: From June to July 2009 more than thirty different in-situ and remote sensing instruments from all over the world participated in the Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI). The campaign took place at KNMI's Cabauw Experimental Site for Atmospheric Research in the Netherlands. Its main objectives were to determine the accuracy of state-of-the-art ground-based measurement techniques for the detection of atmospheric nitrogen dioxide (both in-situ and remote sensing), and to investigate their usability in satellite data validation. The expected outcomes are recommendations regarding the operation and calibration of such instruments, retrieval settings, and observation strategies for the use in ground-based networks for air quality monitoring and satellite data validation. Twenty-four optical spectrometers participated in the campaign, of which twenty-one had the capability to scan different elevation angles consecutively, the so-called Multi-axis DOAS systems, thereby collecting vertical profile information, in particular for nitrogen dioxide and aerosol. Various in-situ samplers simultaneously characterized the variability of atmospheric trace gases and the physical properties of aerosol particles. A large data set of continuous measurements of these atmospheric constituents has been collected under various meteorological conditions and air pollution levels. Together with the permanent measurement capability at the Cabauw site characterizing the meteorological state of the atmosphere, the CINDI campaign provided a comprehensive observational data set of atmospheric constituents in a highly polluted region of the world during summertime. First detailed comparisons performed with the CINDI data show that slant column measurements of NO2, O4 and HCHO with MAX-DOAS agree within 5 to 15%, vertical profiles of NO2 derived from several independent instruments agree within 25%, and MAX-DOAS aerosol optical thickness agrees within 20–30% with AERONET data. For the in-situ NO2 instrument using a molybdenum converter, a bias was found as large as 5 ppbv during day time, when compared to the other in-situ instruments using photolytic converters.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-04-22
    Description: Ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements of nitrous acid (HONO) and its precursor NO2 (nitrogen dioxide) have been performed daily in Beijing city center (39.98° N, 116.38° E) from July 2008 to April 2009 and at the suburban site of Xianghe (39.75° N, 116.96° E) located ~ 60 km east of Beijing from March 2010 to December 2012. This extensive data set allowed for the first time the investigation of the seasonal cycle of HONO as well as its diurnal variation in and in the vicinity of a megacity. Our study was focused on the HONO and NO2 near-surface concentrations (0–200 m layer) and total vertical column densities (VCDs) retrieved by applying the Optimal Estimation Method to the MAX-DOAS observations. Monthly averaged HONO near-surface concentrations at local noon display a strong seasonal cycle with a maximum in late fall/winter (~ 0.8 and 0.7 ppb at Beijing and Xianghe, respectively) and a minimum in summer (~ 0.1 ppb at Beijing and 0.03 ppb at Xianghe). The seasonal cycles of HONO and NO2 appear to be highly correlated, with correlation coefficients in the 0.7–0.9 and 0.5–0.8 ranges at Beijing and Xianghe, respectively. The stronger correlation of HONO with NO2 and also with aerosols observed in Beijing suggests possibly larger role of NO2 conversion into HONO in the Beijing city center than at Xianghe. The observed diurnal cycle of HONO near-surface concentration shows a maximum in the early morning (about 1 ppb at both sites) likely resulting from night-time accumulation, followed by a decrease to values of about 0.1–0.4 ppb around local noon. The HONO/NO2 ratio shows a similar pattern with a maximum in the early morning (values up to 0.08) and a decrease to ~ 0.01–0.02 around local noon. The seasonal and diurnal cycles of the HONO near-surface concentration are found to be similar in shape and in relative amplitude to the corresponding cycles of the HONO total VCD and are therefore likely mainly driven by the balance between HONO sources and the photolytic sink, whereas dilution effects appear to play only a minor role. The estimation of OH radical production from HONO and O3 photolysis based on retrieved HONO near-surface concentrations and calculated photolysis rates indicate that HONO is by far the largest source of OH radicals in winter as well as in the early morning at all seasons, while the contribution of O3 dominates in summer from mid-morning until mid-afternoon.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-05-19
    Description: Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) is a technique to measure trace gas amounts in the lower troposphere from ground-based scattered sunlight observations. MAX-DOAS observations are especially suitable for validation of tropospheric trace gas observations from satellite, since they have a representative range of several kilometers, both in the horizontal and in the vertical dimension. A two-step retrieval scheme is presented here, to derive aerosol corrected tropospheric NO2 columns from MAX-DOAS observations. In a first step, boundary layer aerosols, characterized in terms of aerosol optical thickness (AOT), are estimated from relative intensity observations, which are defined as the ratio of the sky radiance at elevation α and the sky radiance in the zenith. Relative intensity measurements have the advantage of a strong dependence on boundary layer AOT and almost no dependence on boundary layer height. In a second step, tropospheric NO2 columns are derived from differential slant columns, based on AOT-dependent air mass factors. This two-step retrieval scheme was applied to cloud free periods in a twelve month data set of observations in De Bilt, the Netherlands. In a comparison with AERONET (Cabauw site) a mean difference in AOT (AERONET minus MAX-DOAS) of −0.01±0.08 was found, and a correlation of 0.85. Tropospheric-NO2 columns were compared with OMI-satellite tropospheric NO2. For ground-based observations restricted to uncertainties below 10%, no significant difference was found, and a correlation of 0.88.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-04-23
    Description: We present the new version (v14) of the BIRA-IASB algorithm for the retrieval of formaldehyde (H2CO) columns from spaceborne UV-Visible sensors. Applied to OMI measurements from Aura and to GOME-2 measurements from MetOp-A and B, this algorithm is used to produce global distributions of H2CO representative of mid-morning and early afternoon conditions. Its main features include (1) a new iterative DOAS scheme involving three fitting intervals to better account for the O2-O2 absorption, (2) the use of earthshine radiances averaged in the equatorial Pacific as reference spectra, (3) a destriping correction and background normalisation resolved in the along-swath position. For the air mass factor calculation, a priori vertical profiles calculated by the IMAGES chemistry transport model at 9.30 a.m. and 13.30 p.m. are used. Although the resulting GOME-2 and OMI H2CO vertical columns are found to be highly correlated, some systematic differences are observed. Afternoon columns are generally larger than morning ones, especially in mid-latitude regions. In contrast, over tropical rainforests, morning H2CO columns significantly exceed those observed in the afternoon. These differences are discussed in terms of the H2CO column variation between mid-morning and early afternoon, using ground-based MAX-DOAS measurements available from seven stations in Europe, China and Africa. Validation results confirm the capacity of the combined satellite measurements to resolve diurnal variations in H2CO columns. Furthermore, vertical profiles derived from MAX-DOAS measurements in the Beijing area and in Bujumbura are used for a more detailed validation exercise. In both regions, we find an agreement better than 15% when MAX-DOAS profiles are used as a priori for the satellite retrievals. Finally regional trends in H2CO columns are estimated for the 2004–2014 period using SCIAMACHY and GOME-2 data for morning conditions, and OMI for early afternoon conditions. Consistent features are observed such as an increase of the columns in India and Central-East China, and a decrease in Eastern US and Europe. We find that the higher horizontal resolution of OMI combined to a better sampling and a more favourable illumination at mid-day allow for more significant trend estimates, especially over Europe and North America. Importantly, in some parts of the Amazonian forest, we observe with both time series a significant downward trend in H2CO columns, spatially correlated with areas affected by deforestation.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-06-24
    Description: Muliple Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) instruments can measure from the ground the absorption by nitrogen dioxide (NO2) of scattered sunlight seen in multiple viewing directions. This paper studies the potential of this technique to derive the vertical distribution of NO2 in the troposphere. Such profile information is essential in validation studies in which MAX-DOAS retrievals play a role. The retrieval algorithm used is based on a pre-calculated look-up table and assumes homogeneous mixing of aerosols and NO2 in layers extending from the surface to a variable height. Two retrieval models are compared: one including and one excluding an elevated NO2 layer at a fixed altitude in the free troposphere. An ensemble technique is applied to derive retrieved model uncertainties. Sensitivity studies demonstrate that MAX-DOAS based retrievals can make a distinction between an NO2 layer that extends from the surface to a certain height (having a constant mixing ratio, or a mixing ratio that decreases with altitude) and an elevated NO2 layer. The height of the elevated NO2 layer can only be retrieved accurately when the aerosol extinction profile is known and the measurement noise is low. The uncertainty in this elevated NO2 layer height provides the main source of uncertainty in the retrieval of the free tropospheric contribution to the tropospheric NO2 column. A comparison was performed with independent data, based on observations done at the CINDI campaign, held in the Netherlands in 2009. Comparison with lidar partial tropospheric NO2 columns showed a correlation of 0.78, and an average difference of 0.1× 1015 molec cm−2. The diurnal evolution of the NO2 volume mixing ratio measured by in-situ monitors at the surface and averaged over five days with cloud-free mornings, compares quite well to the MAX-DOAS retrieval: a correlation was found of 0.8, and an average difference of 0.2 ppb.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-11-23
    Description: In June 2009, 22 spectrometers from 14 institutes measured tropospheric and stratospheric NO2 from the ground for more than 11 days during the Cabauw Intercomparison Campaign of Nitrogen Dioxide measuring Instruments (CINDI), at Cabauw, NL (51.97° N, 4.93° E). All visible instruments used a common wavelength range and set of cross sections for the spectral analysis. Most of the instruments were of the multi-axis design with analysis by differential spectroscopy software (MAX-DOAS), whose non-zenith slant columns were compared by examining slopes of their least-squares straight line fits to mean values of a selection of instruments, after taking 30-min averages. Zenith slant columns near twilight were compared by fits to interpolated values of a reference instrument, then normalised by the mean of the slopes of the best instruments. For visible MAX-DOAS instruments, the means of the fitted slopes for NO2 and O4 of all except one instrument were within 10% of unity at almost all non-zenith elevations, and most were within 5%. Values for UV MAX-DOAS instruments were almost as good, being 12% and 7%, respectively. For visible instruments at zenith near twilight, the means of the fitted slopes of all instruments were within 5% of unity. This level of agreement is as good as that of previous intercomparisons, despite the site not being ideal for zenith twilight measurements. It bodes well for the future of measurements of tropospheric NO2, as previous intercomparisons were only for zenith instruments focussing on stratospheric NO2, with their longer heritage.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...