ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1432
    Keywords: Chloroplast 4.5S rRNA ; Cytosolic and chloroplast 5S rRNAs ; 5.8S rRNA ; 18S rRNA ; Nucleotide sequences ; Phylogenetic trees ; Angiosperms ; Gymnosperms ; Monocotyledons ; Dicotyledons
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Complete or partial nucleotide sequences of five different rRNA species, coded by nuclear (18S, 5.8S, and 5S) or chloroplast genomes (5S, 4.5S) from a number of seed plants were determined. Based on the sequence data, the phylogenetic dendrograms were built by two methods, maximum parsimony and compatibility. The topologies of the trees for different rRNA species are not fully congruent, but they share some common features. It may be concluded that both gymnosperms and angiosperms are monophyletic groups. The data obtained suggest that the divergence of all the main groups of extant gymnosperms occurred after the branching off of the angiosperm lineage. As the time of divergence of at least some of these gymnosperm taxa is traceable back to the early Carboniferous, it may be concluded that the genealogical splitting of gymnosperm and angiosperm lineages occurred before this event, at least 360 million years ago, i.e., much earlier than the first angiosperm fossils were dated. Ancestral forms of angiosperms ought to be searched for among Progymnospermopsida. Genealogical relationships among gymnosperm taxa cannot be deduced unambiguously on the basis of rRNA data. The only inference may be that the taxon Gnetopsida is an artificial one, andGnetum andEphedra belong to quite different lineages of gymnosperms. As to the phylogenetic position of the two Angiospermae classes, extant monocotyledons seem to be a paraphyletic group located near the root of the angiosperm branch; it emerged at the earliest stages of angiosperm evolution. We may conclude that either monocotyledonous characters arose independently more than once in different groups of ancient Magnoliales or that monocotyledonous forms rather than dicotyledonous Magnoliales were the earliest angiosperms. Judging by the rRNA trees, Magnoliales are the most ancient group among dicotyledons. The most ancient lineage among monocotyledons leads to modern Liliaceae.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5117
    Keywords: 5S rRNA ; Platyhelminthes ; Turbellaria ; parasitic flatworms ; phylogeny
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract 5S rRNAs from 12 species of free living and parasitic platyhelminthes were sequenced. In the phylogenetic analysis, attention was focused on the statistical estimates of the trees corresponding to existing phylogenetic hypotheses. The available 5S rRNA data agree well with widely accepted views on the relationships between the Acoela, Polycladida, Tricladida, and Neorhabdocoela; our analysis of the published 18S rRNA sequences also demonstrated good correspondence between these views and molecular data. With available 5S rRNA data the hypothesis that the dalyellioid turbellarians is the sister group of the Neodermata is less convincing than the hypotheses proposing the Neodermata as the sister group of the Neorhabdocoela, or of the Seriata, or of the branch uniting them. A relatively low rate of base replacement in parasitic flatworms, probably, accounts for the uncertain position of the Neodermata, while a relatively high rate in planarians may explain a relatively too early divergence of the Tricladida in several published phylogenetic trees constructed from various rRNA data.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Plant systematics and evolution 161 (1988), S. 155-168 
    ISSN: 1615-6110
    Keywords: Angiosperms ; Compositae ; Umbelliferae ; Iridaceae ; DNA hybridization ; systematics ; rank of taxa
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The problem of taxa equivalency in phylogenetically distant groups can hardly be solved by comparing morphological differences alone. An attempt is made to approach the problem by means of DNA comparisons, e.g., DNA hybridization. Data obtained forCompositae, Umbelliferae andIridaceae indicate that both unique and repetitive DNA sequence comparisons lead to the conclusions that genera within these families are not equivalent, e.g., the differences in the DNA among the species ofIris are much more pronounced than among those ofAchillea; some genera ofUmbelliferae occupy an intermediate position.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1995-06-01
    Print ISSN: 0018-8158
    Electronic ISSN: 1573-5117
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...