ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-09-28
    Description: Langmuir DOI: 10.1021/la502969w
    Print ISSN: 0743-7463
    Electronic ISSN: 1520-5827
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-11-25
    Description: The spider mite Tetranychus urticae is a cosmopolitan agricultural pest with an extensive host plant range and an extreme record of pesticide resistance. Here we present the completely sequenced and annotated spider mite genome, representing the first complete chelicerate genome. At 90 megabases T. urticae has the smallest sequenced arthropod genome. Compared with other arthropods, the spider mite genome shows unique changes in the hormonal environment and organization of the Hox complex, and also reveals evolutionary innovation of silk production. We find strong signatures of polyphagy and detoxification in gene families associated with feeding on different hosts and in new gene families acquired by lateral gene transfer. Deep transcriptome analysis of mites feeding on different plants shows how this pest responds to a changing host environment. The T. urticae genome thus offers new insights into arthropod evolution and plant-herbivore interactions, and provides unique opportunities for developing novel plant protection strategies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grbic, Miodrag -- Van Leeuwen, Thomas -- Clark, Richard M -- Rombauts, Stephane -- Rouze, Pierre -- Grbic, Vojislava -- Osborne, Edward J -- Dermauw, Wannes -- Ngoc, Phuong Cao Thi -- Ortego, Felix -- Hernandez-Crespo, Pedro -- Diaz, Isabel -- Martinez, Manuel -- Navajas, Maria -- Sucena, Elio -- Magalhaes, Sara -- Nagy, Lisa -- Pace, Ryan M -- Djuranovic, Sergej -- Smagghe, Guy -- Iga, Masatoshi -- Christiaens, Olivier -- Veenstra, Jan A -- Ewer, John -- Villalobos, Rodrigo Mancilla -- Hutter, Jeffrey L -- Hudson, Stephen D -- Velez, Marisela -- Yi, Soojin V -- Zeng, Jia -- Pires-daSilva, Andre -- Roch, Fernando -- Cazaux, Marc -- Navarro, Marie -- Zhurov, Vladimir -- Acevedo, Gustavo -- Bjelica, Anica -- Fawcett, Jeffrey A -- Bonnet, Eric -- Martens, Cindy -- Baele, Guy -- Wissler, Lothar -- Sanchez-Rodriguez, Aminael -- Tirry, Luc -- Blais, Catherine -- Demeestere, Kristof -- Henz, Stefan R -- Gregory, T Ryan -- Mathieu, Johannes -- Verdon, Lou -- Farinelli, Laurent -- Schmutz, Jeremy -- Lindquist, Erika -- Feyereisen, Rene -- Van de Peer, Yves -- England -- Nature. 2011 Nov 23;479(7374):487-92. doi: 10.1038/nature10640.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, The University of Western Ontario, London N6A 5B7, Canada. mgrbic@uwo.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22113690" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/*genetics/physiology ; Animals ; Ecdysterone/analogs & derivatives/genetics ; Evolution, Molecular ; Fibroins/genetics ; Gene Expression Regulation ; Gene Transfer, Horizontal/genetics ; Genes, Homeobox/genetics ; Genome/*genetics ; Genomics ; Herbivory/*genetics/physiology ; Molecular Sequence Data ; Molting/genetics ; Multigene Family/genetics ; Nanostructures/chemistry ; Plants/parasitology ; Silk/biosynthesis/chemistry ; Tetranychidae/*genetics/*physiology ; Transcriptome/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-12-17
    Description: While mechanisms to detoxify plant produced, anti-herbivore compounds have been associated with plant host use by herbivores, less is known about the role of chemosensory perception in their life histories. This is especially true for generalists, including chelicerate herbivores that evolved herbivory independently from the more studied insect lineages. To shed light on chemosensory perception in a generalist herbivore, we characterized the chemosensory receptors (CRs) of the chelicerate two-spotted spider mite, Tetranychus urticae , an extreme generalist. Strikingly, T. urticae has more CRs than reported in any other arthropod to date. Including pseudogenes, 689 gustatory receptors were identified, as were 136 degenerin/Epithelial Na+ Channels (ENaCs) that have also been implicated as CRs in insects. The genomic distribution of T. urticae gustatory receptors indicates recurring bursts of lineage-specific proliferations, with the extent of receptor clusters reminiscent of those observed in the CR-rich genomes of vertebrates or C. elegans . Although pseudogenization of many gustatory receptors within clusters suggests relaxed selection, a subset of receptors is expressed. Consistent with functions as CRs, the genomic distribution and expression of ENaCs in lineage-specific T. urticae expansions mirrors that observed for gustatory receptors. The expansion of ENaCs in T. urticae to 〉 3-fold that reported in other animals was unexpected, raising the possibility that ENaCs in T. urticae have been co-opted to fulfill a major role performed by unrelated CRs in other animals. More broadly, our findings suggest an elaborate role for chemosensory perception in generalist herbivores that are of key ecological and agricultural importance.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...