ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Plant Physiology 29 (1978), S. 277-317 
    ISSN: 0066-4294
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 8 (1985), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract An electrical analogue describing the phase and amplitude relations between transpiration, water potential and stem shrinkage for trees was developed. Observations of shrinking and swelling at various heights up a Pinus radiata tree were obtained over several weeks in summer and autumn.The relative amplitude in shrinkage increased by a factor of two up the stem, but phase lags were small. The data obtained were used in conjunction with the electrical analogue of the How pathway to obtain an estimate of the relative magnitude of the capacitance of the living bark and the sapwood, and to predict phase lags between transpiration and leaf water potential, and lags in transpirational flux up the stem.The results suggest that if water potentials recover by dawn, phase lags in water potential down tree stems arc small and that the exchange between water stored in the sapwood and the transpiration stream is irreversible over the diurnal time scale.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 7 (1984), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. The carbon, water and nutrient relations of the xylem parasites Loranthus europaeus and Viscum laxum and their respective hosts. Quercus robur and Pinus sylvestris, were followed throughout clear days in July in order to study water and nutrient interactions in a simple system in which the plant growth depends on the host for its water and nutrients. At similar quantum flux densities, temperatures and vapour pressure deficits, the mistletoes had higher rates of transpiration and lower leaf water potentials than their hosts, but similar rates of CO2 assimilation. Based on measurements of the nutrient content of the xylem and on seasonal measurements of the biomass and the tissue nutrient content, the present study suggests that the high rates of transpiration may be necessary for the parasites to take up sufficient nitrogen from the xylem of the host for production of biomass (leaves, fruits and stems).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Science Ltd
    Grass and forage science 56 (2001), S. 0 
    ISSN: 1365-2494
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Germination of annual pasture species was studied under controlled-environment conditions in south-western Australia at temperatures in the range from 4°C to 35°C. Subterranean clover (Trifolium subterraneum) and Wimmera ryegrass (Lolium rigidum) had a germination of 90% between 12°C and 29°C, whereas capeweed (Arctotheca calendula) had a high germination percentage in a much narrower temperature range with an optimum of 25°C. Growth of subterranean clover, capeweed and Wimmera ryegrass between 28 and 49 days after sowing (DAS) was also studied at two photon flux densities, 13 and 30 mol m−2 d−1, and at diel temperatures in the range from 15/10°C to 33/28°C. Pasture species grown at a density of 1000 plants m−2 accumulated at least twice the amount of shoot dry matter when subjected to temperatures of 21/16°C and 27/22°C, compared with a lower temperature of 15/10°C and a higher temperature of 33/28°C. Except at the highest temperature and at high photon flux density, capeweed had lower green area indices (GAI) than the other two species at 28 DAS. Crop growth rates between 28 and 49 DAS were higher in Wimmera ryegrass than in the other two species, whereas subterranean clover had a lower relative growth rate than the other two species at all temperatures and both photon flux densities. Subterranean clover and capeweed intercepted a greater proportion of the incident radiation compared with Wimmera ryegrass. The values of radiation interception and GAI were used to estimate the number of DAS to reach 75% radiation interception [f(0·75)]. The number of days to reach f(0·75) decreased with increasing temperature from 15/10°C to reach a minimum at 27/22°C. The time taken to achieve f(0·75) was always shorter by about 10 d when the photon flux density was 30 mol m−2 d−1 in the autumn compared with 13 mol m−2 d−1 in the winter. These results are discussed in relation to the early growth of annual pasture in the field.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 43 (1978), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Steady state rates of net photosynthesis and stomatal conductance at high water potentials were measured under controlled conditions in a leaf chamber on Sitka spruce [Picea sitchensis (Bong.) Carr.] shoots detached from the forest canopy or on seedlings. The water supply to the seedlings was terminated by excision and the shoot water potential (or critical water potential) and osmotic potential at the onset of stomatal closure measured. The turgor potential was calculated. The initial osmotic potential before insertion of the shoot into the chamber was also measured. Shoot water potential and osmotic potential at stomatal closure, and initial osmotic potential were significantly higher (less negative) in foliage from the lowest level in the canopy compared with foliage in the upper canopy, and higher in shoots of seedlings transferred to low light than in those at high light. Critical water potential also varied with season, being higher in July than in October and November. In all except one instance, turgor potential at the onset of stomatal closure was negative, possibly because of dilution of the cell sap by the extracellular water during the estimate of osmotic potential.Over all the experiments variation in critical water potential was correlated with variation in critical osmotic potential and, to a lesser extent, the initial osmotic potential. However, turgor potential at the critical potential varied from +0.6 to -4.6 bar. This suggests that difference in turgor between the guard cells and subsidiary cells, which controls stomatal aperture, is only loosely coupled with the bulk leaf turgor and hence that bulk leaf turgor is not a good index of the turbor relations of the guard cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 115 (1998), S. 32-38 
    ISSN: 1432-1939
    Keywords: Key words Annual pastures ; carbon isotope discrimination ; gas exchange ; transpiration efficiency water use efficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Attempts to improve water use efficiency in regions with Mediterranean climates generally focus on increasing plant transpiration relative to evaporation from the soil and increasing transpiration efficiency. Our aim was to determine if transpiration efficiency differs among key species occurring in annual pastures in southern Australia. Two glasshouse experiments were conducted with three key pasture species, subterranean clover (Trifolium subterraneum L.), capeweed [Arctotheca calendula (L.) Levyns] and annual ryegrass (Lolium rigidum Gaudin), and wheat (Triticum aestivum L.). Transpiration efficiency was assessed at the levels of␣whole-plant biomass and water use (W), leaf gas exchange measurements of the ratio of CO2 assimilation to leaf conductance to water vapour (A/g), and carbon isotope discrimination (Δ) in leaf tissue. In addition, Δ was measured on shoots of the three pasture species growing together in the field. In the glasshouse studies, annual ryegrass had a consistently higher transpiration efficiency than subterranean clover or capeweed by all methods of measurement. Subterranean clover and capeweed had similar transpiration efficiencies by all three methods of measurement. Wheat had W values similar to ryegrass but A/g and Δ values similar to subterranean clover or capeweed. The high W of annual ryegrass seems to be related to a conservative leaf gas exchange behaviour, with lower assimilation and conductance but higher A/g than for the other species. In contrast to the glasshouse results, the three pasture species had similar Δ values when growing together in mixed-species swards in the field. Reasons for these differing responses between glasshouse and field-grown plants are discussed in terms of the implications for improving the transpiration efficiency of mixed-species annual pasture communities in the field.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The responses of leaf conductance, leaf water potential and rates of transpiration and net photosynthesis at different vapour pressure deficits ranging from 10 to 30 Pa kPa-1 were followed in the sclerophyllous woody shrub Nerium oleander L. as the extractable soil water content decreased. When the vapour pressure deficit around a plant was kept constant at 25 Pa kPa-1 as the soil water content decreased, the leaf conductance and transpiration rate showed a marked closing response to leaf water potential at-1.1 to-1.2 MPa, whereas when the vapour pressure deficit around the plant was kept constant at 10 Pa kPa-1, leaf conductance decreased almost linearly from-0.4 to-1.1 MPa. Increasing the vapour pressure deficit from 10 to 30 Pa kPa-1 in 5 Pa kPa-1 steps, decreased leaf conductance at all exchangeable soil water contents. Changing the leaf water potential in a single leaf by exposing the remainder of the plant to a high rate of transpiration decreased the water potential of that leaf, but did not influence leaf conductance when the soil water content was high. As the soil water content was decreased, leaf conductances and photosynthetic rates were higher at equal levels of water potential when the decrease in potential was caused by short-term increases in transpiration than when the potential was decreased by soil drying. As the soil dried and the stomata closed, the rate of photosynthesis decreased with a decrease in the internal carbon dioxide partial pressure, but neither the net photosynthetic rate nor the internal CO2 partial pressure were affected by low water potentials resulting from short-term increases in the rate of transpiration. Leaf conductance, transpiration rate and net photosynthetic rate showed no unique relationship to leaf water potential, but in all experiments the leaf gas exchange decreased when about one half of the extractable soil water had been utilized. We conclude that soil water status rather than leaf water status controls leaf gas exchange in N. oleander.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 250 (1974), S. 486-489 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The Earth's surface acts as a sink for ozone produced in the upper atmosphere11. The rate of removal of ozone varies with the surface : water, snow, grass, and a juniper bush remove it increasingly quickly12,13. Since soil bare of vegetation also removes ozone from the atmosphere at rates similar ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The CO2 assimilation of primary foliage of red maple (Acer rubrum L.) and red oak (Quercus rubra L.), and of regrowth foliage produced in response to simulated insect defoliation, was measured throughout the season by infrared gas analysis: parallel measurements of leaf conductance were obtained by ventilated diffusion porometry. The rate of net photosynthesis, measured at a quantum flux density of 1,150 μmol m-2s-1, of primary foliage of both species increased from slightly negative values to about 5 μmol m-2s-1 by early June. Thereafter the rate of photosynthesis of maple slowly declined to about 4 μmol m-2s-1 before onset of a senescent decline in early September, while that of oak slowly increased to about 8 μmol m-2s-1 before onset of senescence. Manual defoliation to simulate insect attack in mid-June elicited refoliation proportional to the severity of defoliation in early July. After 100% defoliation, fully expanded regrowth foliage of maple, but not of oak, had a rate of net photosynthesis from mid-July through September that was about 50% higher than in the primary foliage of undefoliated trees. A 30 to 60% enhancement of photosynthesis of residual primary foliage remaining on 50 and 75% defoliated trees during July was also observed. The seasonal patterns of CO2 exchange of primary and regrowth foliage, and the enhancement of CO2 assimilation in residual foliage, was paralleled by similar changes in leaf conductance to water vapour. Carbon budgets of leaf canopies of each species showed that the net assimilation of the leaf canopy of both species ranged from 19 to 67% more than what would have been expected solely from replacement of leaf area. This response was greater in maple than in oak, presumably a reflection of the high rate of CO2 assimilation of regrowth maple foliage compared with that of the undefoliated control in maple. The increased CO2 assimilation of regrowth maple foliage and the increases in CO2 assimilation of residual primary foliage after defoliation offer evidence that heretofore unanticipated physiological mechanisms may be important to perennial species coping with herbivory.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Irrigation science 10 (1989), S. 165-168 
    ISSN: 1432-1319
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...