ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Sunflower plants (Helianthus annuus L.) were subjected to soil drying with their shoots either kept fully turgid using a Passioura-type pressure chamber or allowed to decrease in water potential. Whether the shoots were kept turgid or not, leaf conductance decreased below a certain soil water content. During the soil drying, xylem sap samples were taken from individual intact and transpiring plants. Xylem sap concentrations of nitrate and phosphate decreased with soil water content, whereas the concentrations of the other anions (SO42 and Cl−) remained unaltered. Calcium concentrations also decreased. Potassium, magnesium, manganese and sodium concentrations stayed constant during soil drying. In contrast, the pH, the buffering capacity at a pH below 5 and the cation/anion ratio increased after soil water content was lowered below a certain threshold. Amino acid concentration of the xylem sap increased with decreasing soil water content. The effect of changes in ion concentrations in the xylem sap on leaf conductance is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Sunflower plants [Helianthus annuus L.) were subjected to soil drought. Leaf conductance declined with soil water content even when the shoot was kept turgid throughout the drying period. The concentration of abscisic acid in the xylem sap increased with decreasing soil water content. No general relation could be established between abscisic acid concentration in the xylem sap and leaf conductance due to marked differences in the sensitivity of leaf conductance of individual plants to abscisic acid from the xylem sap. The combination of these results with data from Gollan, Schurr & Schulze (1992, see pp. 551–559, this issue) reveals close connection of the effectiveness of abscisic acid as a root to shoot signal to the nutritional status of the plant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 11 (1988), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The responses of leaf water potential, leaf conductance, transpiration rate and net photosynthetic rate to vapour pressure deficits varying from 10 to 30 Pa kPa-1 were followed in Helianthus annuus as the extractable soil water decreased. With a vapour pressure deficit of 25 Pa kPa-1 around the entire plant as the soil water content decreased, the leaf conductance and transpiration rate showed a strong closing response to leaf water potential at a value of-0.65 MPa, whereas with a vapour pressure deficit of 10 Pa kPa-1 around the entire plant, the rate of transpiration and leaf conductance decreased almost linearly as the leaf water potential decreased from-0.4 to-1.0 MPa. Increasing the vapour pressure deficit from 10 to 30 Pa kPa-1 in 5 Pa kPa-1 steps decreased the leaf conductance by a similar proportion at all extractable soil water contents. At high soil water contents, the decrease in conductance with leaf water potential was greater when the vapour pressure deficit was increased than when it was not, indicating a direct influence of vapour pressure deficit on the stomata. The rate of net photosynthesis decreased to a smaller degree than the leaf conductance when the vapour pressure deficit around the leaf was varied. Overall, the net photosynthetic rate decreased almost linearly from 20 to 25 μmol m-2 s-1 at-0.3 MPa to 5 μmol m-2 s-1 at-1.2 MPa. As the soil water decreased, the internal carbon dioxide partial pressure was maintained between 14 and 25 Pa. No unique relationship between leaf conductance, transpiration rate or photosynthetic rate and leaf water potential was observed, but in all experiments leaf conductance and the rate of net photosynthesis decreased when about two-thirds of the extractable water in the solid had been utilized irrespective of the leaf water potential. We conclude that soil water status, not leaf water status, affects the stomatal behaviour and photosynthesis of H. annuus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The responses of leaf conductance, leaf water potential and rates of transpiration and net photosynthesis at different vapour pressure deficits ranging from 10 to 30 Pa kPa-1 were followed in the sclerophyllous woody shrub Nerium oleander L. as the extractable soil water content decreased. When the vapour pressure deficit around a plant was kept constant at 25 Pa kPa-1 as the soil water content decreased, the leaf conductance and transpiration rate showed a marked closing response to leaf water potential at-1.1 to-1.2 MPa, whereas when the vapour pressure deficit around the plant was kept constant at 10 Pa kPa-1, leaf conductance decreased almost linearly from-0.4 to-1.1 MPa. Increasing the vapour pressure deficit from 10 to 30 Pa kPa-1 in 5 Pa kPa-1 steps, decreased leaf conductance at all exchangeable soil water contents. Changing the leaf water potential in a single leaf by exposing the remainder of the plant to a high rate of transpiration decreased the water potential of that leaf, but did not influence leaf conductance when the soil water content was high. As the soil water content was decreased, leaf conductances and photosynthetic rates were higher at equal levels of water potential when the decrease in potential was caused by short-term increases in transpiration than when the potential was decreased by soil drying. As the soil dried and the stomata closed, the rate of photosynthesis decreased with a decrease in the internal carbon dioxide partial pressure, but neither the net photosynthetic rate nor the internal CO2 partial pressure were affected by low water potentials resulting from short-term increases in the rate of transpiration. Leaf conductance, transpiration rate and net photosynthetic rate showed no unique relationship to leaf water potential, but in all experiments the leaf gas exchange decreased when about one half of the extractable soil water had been utilized. We conclude that soil water status rather than leaf water status controls leaf gas exchange in N. oleander.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The responses of photosynthesis, transpiration and leaf conductance to changes in vapour pressure deficit were followed in well-watered plants of the herbaceous species, Helianthus annuus, Helianthus nuttallii, Pisum sativum and Vigna unguiculata, and in the woody species having either sclerophyllous leaves, Arbutus unedo, Nerium oleander and Pistacia vera, or mesomorphic leaves, Corylus avellana, Gossypium hirsutum and Prunus dulcis. When the vapour pressure deficit of the air around a single leaf in a cuvette was varied from 10 to 30 Pa kPa-1 in 5 Pa kPa-1 steps, while holding the remainder of the plant at a vapour presure deficit of 10 Pa kPa-1, the leaf conductance and net photosynthetic rate of the leaf decreased in all species. The rate of transpiration increased initially with increase in vapour pressure deficit in all species, but in several species a maximum transpiration rate was observed at 20 to 25 Pa kPa-1. Concurrent measurements of the leaf water potential by in situ psychrometry showed that an increase in the vapour pressure deficit decreased the leaf water potential in all species. The decrease was greatest in woody species, and least in herbaceous species. When the vapour pressure deficit around the remainder of the plant was increased while the leaf in the cuvette was exposed to a low and constant vapour pressure deficit, similar responses in both degree and magnitude in the rates of transpiration and leaf conductance were observed in the remainder of the plant as those occurring when the vapour pressure deficit around the single leaf was varied. Increasing the external vapour pressure deficit lowered the water potential of the leaf in the cuvette in the woody species and induced a decrease in leaf conductance in some, but not all, speies. The decrease in leaf conductance with decreasing water potential was greater in the woody species when the vapour pressure deficit was increased than when it remained low and constant, indicating that changing the leaf-to-air vapour pressure difference had a direct effect on the stomata in these species. The low hydraulic resistance and maintenance of a high leaf water potential precluded such an analysis in the herbaceous species. We conclude that at least in the woody species studied, an increase in the vapour pressure deficit around a leaf will decrease leaf gas exchange through a direct effect on the leaf epidermis and sometimes additionally through a lowering of the mesophyll water potential.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-05-18
    Description: Influences from the Tropics, the stratosphere and the specification of observed sea surface temperature and sea-ice (SSTSI) on Northern Hemisphere winter mean circulation anomalies during the period 1960/61 to 2001/02 are studied using a relaxation technique applied to the ECMWF model. On interannual time-scales, the Tropics strongly influence the Pacific sector but also the North Atlantic sector, although weakly. The stratosphere is found to be influential on the North Atlantic Oscillation (NAO) on interannual time-scales but is less important over the Pacific sector. Adding the observed SSTSI to the tropical relaxation runs generally improves the model performance on interannual time-scales but degrades/enhances the model's ability to capture the 42-year trend over the Pacific/Atlantic sector. While relaxing the stratosphere to the reanalysis fails to capture the trend over the whole 42-year period, the stratosphere is shown to be influential on the upward trend of the NAO index from 1965 to 1995, but with reduced amplitude compared to previous studies. Influence from the Tropics is found to be important for the trend over both time periods and over both sectors although, across all experiments, we can account for only 30% of the amplitude of the hemispheric trend. Copyright © 2012 Royal Meteorological Society
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-02-13
    Description: A set of relaxation experiments using the ECMWF atmospheric model is used to analyse the severe European winter of 1962/63. We argue that the severe winter weather was associated with a wave train that originated in the tropical Pacific sector (where weak La Nina conditions were present) and was redirected towards Europe, a process we suggest was influenced by the combined effect of the strong easterly phase of the Quasi-Biennial Oscillation (QBO ) and unusually strong easterly winds in the upper equatorial troposphere that winter. A weak tendency towards negative North Atlantic Oscillation (NAO) conditions in December, associated with extratropical sea surface temperature and sea-ice anomalies, might have acted as a favourable preconditioning. The redirection of the wave train towards Europe culminated in the stratospheric sudden warming at the end of January 1963. We argue that in February, the sudden warming event helped maintain the negative NAO regime, allowing the severe weather to persist for a further month. A possible influence from the Madden-Julian Oscillation, as well as a role for internal atmospheric variability, is noted.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-11-08
    Description: The phase and the amplitude of the North Atlantic Oscillation (NAO) are influenced by numerous factors, which include Sea Surface Temperature (SST) anomalies in both the Tropics and extratropics and stratospheric extreme events like Stratospheric Sudden Warmings (SSWs). Analyzing seasonal forecast experiments, which cover the winters from 1979/80–2013/14, with the European Centre for Medium-Range Weather Forecast model, we investigate how these factors affect NAO variability and predictability. Building on the idea that the tropical influence might happen via the stratosphere, special emphasis is placed on the role of major SSWs. Relaxation experiments are performed, where different regions of the atmosphere are relaxed towards ERA-Interim to obtain perfect forecasts in those regions. By comparing experiments with relaxation in the tropical atmosphere, performed with an atmosphere-only model on the one hand and a coupled atmosphere–ocean model version on the other, the importance of extratropical atmosphere–ocean interaction is addressed. Interannual variability of the NAO is best reproduced when perfect knowledge about the NH stratosphere is available together with perfect knowledge of SSTs and sea ice, in which case 64% of the variance of the winter mean NAO is projected to be accounted for with a forecast ensemble of infinite size. The coupled experiment shows a strong bias in the stratospheric polar night jet (PNJ) which might be associated with a drift in the modelled SSTs resembling the North Atlantic cold bias and an underestimation of blockings in the North Atlantic/Europe sector. Consistent with the stronger PNJ, the lowest frequency of major SSWs is found in this experiment. However, after statistically removing the bias, a perfect forecast of the tropical atmosphere and allowing two-way atmosphere–ocean coupling in the extratropics seem to be key ingredients for successful SSW predictions. In combination with SSW occurrence, a clear shift of the predicted NAO towards lower values occurs.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1989-01-01
    Print ISSN: 0003-4312
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...