ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2017-02-01
    Description: Intense wildfires occasionally generate fire-triggered storms, known as pyrocumulonimbus (pyroCb), that can inject smoke particles and trace gases into the upper troposphere and lower stratosphere (UTLS). This study develops the first pyroCb detection algorithm using three infrared (IR) channels from the imager on board GOES-West (GOES-15). The algorithm first identifies deep convection near active fires via the longwave IR brightness temperature, distinguishing between midtropospheric and UTLS injections. During daytime, unique pyroCb microphysical properties are characterized by a medium-wave brightness temperature that is significantly larger than that in the longwave, allowing for separation of pyroCb from other deep convection. A cloud-opacity test reduces potential false detections. Application of this algorithm to 88 intense wildfires observed during the 2013 fire season in western North America resulted in successful detection of individual intense events, pyroCb embedded within traditional convection, and multiple, short-lived pulses of pyroconvective activity. Comparisons with a community inventory indicate that this algorithm captures the majority of pyroCb. The primary limitation is that pyroCb anvils can be small relative to GOES-West pixel size, especially in regions with large viewing angles. The algorithm is also sensitive to some false positives from traditional convection that either ingests smoke or exhibits extreme updraft velocities. A total of 26 pyroCb events are inventoried, including 31 individual pulses, all of which can inject smoke into the UTLS. Six of the inventoried intense pyroCb were not previously documented. Near-real-time application of this algorithm can be extended to other regions and to next-generation geostationary sensors, which offer significant advantages for pyroCb and fire detection.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-11-01
    Description: Global monitoring of tropical cyclones (TC) is enhanced by the unique capabilities provided by the day–night band (DNB), a sensor included on the Visible Infrared Imaging Radiometer Suite (VIIRS) flying on board the Suomi National Polar-Orbiting Partnership (SNPP) satellite. The DNB, a low-light visible–near-infrared-band passive radiometer, can leverage unconventional (i.e., nonsolar) sources of visible light illumination such as moonlight to infer storm structure at night. The DNB provides an unprecedented capability to resolve moonlit clouds at high resolution, offering numerous potential benefits to both operational TC analysts and researchers developing new methods of monitoring TCs occurring within the largely data-void tropical oceanic basins. DNB digital data provide significant enhancements over older nighttime visible data from the Defense Meteorological Satellite Program’s (DMSP) Operational Linescan System (OLS) by leveraging accurate calibration, high sensitivity, and sub-kilometer-scale imagery that covers 2–3 times the moon’s lunar cycle than the OLS. By leveraging these attributes, DNB data can enable the use of automated objective applications instead of subjective image interpretation. Here, the authors detail ways in which critical information about TC structure, location, intensity changes, shear environment, lightning, and other characteristics can be extracted when the DNB data are used in isolation or in a multichannel approach with coincident infrared (IR) channels.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-04-20
    Description: We describe a quantitative evaluation of maritime transparent cirrus cloud detection, which is based on Geostationary Operational Environmental Satellite – 16 (GOES-16) and developed with collocated Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) profiling. The detection algorithm is developed using one month of collocated GOES-16 Advanced Baseline Imager (ABI) Channel 4 (1.378 μm) radiance and CALIOP 0.532 μm column-integrated cloud optical depth (COD). First, the relationships between the clear-sky 1.378 μm radiance, viewing/solar geometry, and precipitable water vapor (PWV) are characterized. Using machine learning techniques, it is shown that the total atmospheric pathlength, proxied by airmass factor (AMF), is a suitable replacement for viewing zenith and solar zenith angles alone, and that PWV is not a significant problem over ocean. Detection thresholds are computed using the Ch. 4 radiance as a function of AMF. The algorithm detects nearly 50% of sub-visual cirrus (COD 〈 0.03), 80% of transparent cirrus (0.03 〈 COD 〈 0.3), and 90% of opaque cirrus (COD 〉 0.3). Using a conservative radiance threshold results in 84% of cloudy pixels being correctly identified and 4% of clear-sky pixels being misidentified as cirrus. A semi-quantitative COD retrieval is developed for GOES ABI based on the observed relationship between CALIOP COD and 1.378 μm radiance. This study lays the groundwork for a more complex, operational GOES transparent cirrus detection algorithm. Future expansion includes an over-land algorithm, a more robust COD retrieval that is suitable for assimilation purposes, and downstream GOES products such as cirrus cloud microphysical property retrieval based on ABI infrared channels.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-25
    Description: A physics-based cloud identification scheme, originally developed for a machine learning forecast system, was applied to verify cloud location and coverage bias errors from two years of 6-hour forecasts. The routine identifies stable and unstable environments based on the potential for buoyant versus stable cloud formation. The efficacy of the scheme is documented by investigating its ability to identify cloud patterns and systematic forecast errors. Results showed stable cloud forecasts contained widespread, persistent negative cloud cover biases most likely associated with turbulent, radiative and microphysical feedback processes. In contrast, unstable clouds were better predicted despite being poorly resolved. This suggests that scale aliasing, while energetically problematic, results in less severe short-term cloud cover errors.This study also evaluated Geostationary Operational Environmental Satellite (GOES) cloud base retrievals for their effectiveness at identifying regions of lower tropospheric cloud cover. Retrieved cloud base heights were sometimes too high with respect to their actual values in regions of deep-layered clouds, resulting in underestimates of the extent of low cloud cover in these areas. Sensitivity experiments indicate the most accurate cloud base estimates existed in regions with cloud tops at or below 8 km.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...