ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2006-02-14
    Description: The availability of data regarding the radiation behavior of GaAs and silicon solar cells is discussed as well as efforts to provide sufficient information. Other materials are considered too immature for reasonable radiation evaluation. The lack of concern over the possible catastrophic radiation degradation in cascade cells is a potentially serious problem. Lithium counterdoping shows potential for removing damage in irradiated P-type material, although initial efficiencies are not comparable to current state of the art. The possibility of refining the lithium doping method to maintain high initial efficiencies and combining it with radiation tolerant structures such as thin BSF cells or vertical junction cells could provide a substantial improvement in EOL efficiencies. Laser annealing of junctions, either those formed ion implantation or diffusion, may not only improve initial cell performance but might also reduce the radiation degradation rate.
    Keywords: ATOMIC AND MOLECULAR PHYSICS
    Type: NASA. Lewis Research Center Space Photovoltaic Res. and Technol. 1983; p 253-254
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-02-14
    Description: The objective of this experiment is to evaluate the synergistic effects of the space environment on various solar-array materials, including solar cells, cover slips with various antireflectance coatings, adhesive, encapsulants, reflector materials, substrate strength materials, mast and harness materials, structural composites, and thermal control treatments. The experiment is passive and consists of an arrangement of material specimens mounted in a 3-in.-deep peripheral tray. The effects of the space environment on the specimens will be determined by comparison of preflight and postflight measurements of mechanical, electrical, and optical properties.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Langley Research Center Long Duration Exposure Facility (LDEF); p 86-87
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-18
    Description: Silicon solar cells manufactured for the terrestrial market are examined as a potential low cost option for low earth orbit (LEO) space flight use. The results of simulated space environmental testing of representative samples are reported and discussed. It is shown that although the terrestrial cells are compatible with most space use requirements significant deficiencies still exist. Cell modifications are discussed which would enhance the space applicability of the various cells examined. In most cases these are expected to be of minimal cost impact. Concern for contact/interconnector designs capable of surviving 30,000 thermal cycles (corresponding to five years in LEO) however, needs to be resolved for the large area terrestrial devices.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-29
    Description: The Advanced Photovoltaic Solar Array (APSA) design is reviewed. The testing results and performance estimates are summarized. The APSA design represents a critical intermediate milestone for the NASA Office of Aeronautics, Exploration, and Technology (OAET) goal of 300 W/kg at Beginning Of Life (BOL), with specific performance characteristics of 130 W/kg (BOL) and 100 W/kg at End Of Life (EOL) for a 10 year geosynchronous (GEO) 10 kW (BOL) space power system. The APSA wing design is scalable over a power range of 1 to 15 kW and is suitable for a full range of missions including Low Earth Orbit (LEO), orbital transfer from LEO to GEO and interplanetary out to 5 AU.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: ESA, European Space Power Conference. Volume 2: Photovoltaic Generators; p 675-680
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-06-07
    Description: Future U.S. interplanetary missions will be less complex and costly than past missions such as Voyager and the soon to be launched, Galileo. This is required to achieve a balanced exploration program that can be sustained within the context of a limited budget. Radioisotope thermoelectric generators (RTGs) have served as the power source for missions beyond the orbit of Mars. It is indicated that the cost to the user of these power sources will significantly increase. Solar arrays can provide a low cost alternative for a number of missions. Potential missions are identified along with concerns for implementation, and some array configurations under present investigation are reviewed.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center Space Photovoltaic Research and Technology 1985; p 195-202
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-08
    Description: The paper continues the status reporting of the development of an ultraweight flexible blanket, flatlpack, fouldout solar array testbed wing that was presented at the First and Second European Space Power Conferences. To date a testbed wing has been built and subjected to a variety of critical functional tests before and after exposrue to simulated launch environments.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-11
    Description: The Stardust program, part of NASA's Discovery Missions was launched on February 7. 1999. It's seven-year mission is to gather interstellar dust and material from the comet Wild-2 and return the material to earth in January 2006. In order to accomplish this mission, the satellite will orbit the sun a total of three times, traversing distances from a little under 1 AU to 2.7 AU. On April 18 2002 , the Stardust spacecraft reached its furthest distance and broke the record for being the farthest spacecraft from the sun powered by solar energy, The Stardust solar panels were built with standard off the shelf 10 Ohm-cm high efficiency silicon solar cells. These solar cells are relatively inexpensive and have shown excellent characteristics under LILT conditions. In order to accommodate the varying temperature and intensity conditions on the electrical power subsystem, an electronic switch box was designed to reconfigure the string length and number of swings depending on the mission phase. This box allowed the use of an inexpensive direct energy transfer system for the electrical power system architecture. The solar panels and electrical power system have met all requirements. Telemetry data from the solar panels at 2.7 AU are in excellent agreement with flight predictions.
    Type: World Conference on Photovoltaic Energy Conversion; Osaka; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-06-07
    Description: Solar array welding technology is examined from its beginnings in the late 1960's to the present. The U.S. and European efforts are compared, and significant similarities are highlighted. The utilization of welding technology for space use is shown to have been influenced by a number of subtle, secondary factors.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center Space Photovoltaic Res. and Technol. 1982: High Efficiency, Radiation Damage, and Blanket Technol.; p 223-230
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-06-07
    Description: Low cost silicon solar cells manufactured for the terrestrial market are examined for possible space flight use. The results of preliminary space environmental testing are reported and discussed. In addition, a number of possible obstacles to the use of these cells is examined. It is concluded that the terrestrial industry could provide an extremely low cost and reliable cell for space use.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center Space Photovoltaic Res. and Technol. 1982: High Efficiency, Radiation Damage, and Blanket Technol.; p 37-43
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-01-25
    Description: In the past 25 years, the majority of interplanetary spacecraft have been powered by nuclear sources. However, as the emphasis on smaller, low cost missions gains momentum, the majority of missions now being planned will use photovoltaic solar arrays. This will present challenges to the solar array builders, inasmuch as planetary requirements usually differ from earth orbital requirements. In addition, these requirements often differ greatly, depending on the specific mission; for example, inner planets vs. outer planets, orbiters vs. flybys, spacecraft vs. landers, and so on. Also, the likelihood of electric propulsion missions will influence the requirements placed on solar array developers. The paper will discuss representative requirements for a range of planetary missions now in the planning stages. Insofar as inner planets are concerned, a Mercury orbiter is being studied with many special requirements. Solar arrays would be exposed to high temperatures and a potentially high radiation environment, and will need to be increasingly pointed off sun as the vehicle approaches Mercury. Identification and development of cell materials and arrays at high incidence angles will be critical to the design. Missions to the outer solar system that have been studied include a Galilean orbiter and a flight to the Kuiper belt. While onboard power requirements would be small (as low as 10 watts), the solar intensity will require relatively large array areas. As a result, such missions will demand extremely compact packaging and low mass structures to conform to launch vehicle constraints. In turn, the large are, low mass designs will impact allowable spacecraft loads. Inflatable array structures, with and without concentration, and multiband gap cells will be considered if available. In general, the highest efficiency cell technologies operable under low intensity, low temperature conditions are needed. Solar arrays will power missions requiring as little as approximately 100 watts, up to several kilowatts (at Earth) in the case of solar electric propulsion missions. Thus, mass and stowage volume minimization will be required over a range of array sizes. Concentrator designs, inflatable structures, and the combination of solar arrays with the telecommunications system have been proposed. Performance, launch vehicle constraints, an cost will be the principal parameters in the design trade space. Other special applications will also be discussed, including requirements relating to planetary landers and probes. In those cases, issues relating to shock loads on landing, operability in (possibly dusty) atmospheres, and extreme temperature cycles must be considered, in addition to performance, stowed volume, and costs.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: NASA. Lewis Research Center, Proceedings of the 14th Space Photovoltaic Research and Technology Conference (SPRAT 14); p 5
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...