ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Oberbauer, Steven F; Tweedie, Craig E; Welker, Jeff M; Fahnestock, Jace T; Henry, Gregory HR; Webber, Patrick J; Hollister, Robert D; Walker, Marilyn D; Kuchy, Andrea; Elmore, Elizabeth; Starr, Gregory (2007): Tundra CO2 fluxes in response to experimental warming across latitudinal and moisture gradients. Ecological Monographs, 77(2), 221-238, https://doi.org/10.1890/06-0649
    Publication Date: 2024-02-03
    Description: Climate warming is expected to differentially affect CO2 exchange of the diverse ecosystems in the Arctic. Quantifying responses of CO2 exchange to warming in these ecosystems will require coordinated experimentation using standard temperature manipulations and measurements. Here, we used the International Tundra Experiment (ITEX) standard warming treatment to determine CO2 flux responses to growing-season warming for ecosystems spanning natural temperature and moisture ranges across the Arctic biome. We used the four North American Arctic ITEX sites (Toolik Lake, Atqasuk, and Barrow [USA] and Alexandra Fiord [Canada]) that span 10° of latitude. At each site, we investigated the CO2 responses to warming in both dry and wet or moist ecosystems. Net ecosystem CO2 exchange (NEE), ecosystem respiration (ER), and gross ecosystem photosynthesis (GEP) were assessed using chamber techniques conducted over 24-h periods sampled regularly throughout the summers of two years at all sites. At Toolik Lake, warming increased net CO2 losses in both moist and dry ecosystems. In contrast, at Atqasuk and Barrow, warming increased net CO2 uptake in wet ecosystems but increased losses from dry ecosystems. At Alexandra Fiord, warming improved net carbon uptake in the moist ecosystem in both years, but in the wet and dry ecosystems uptake increased in one year and decreased the other. Warming generally increased ER, with the largest increases in dry ecosystems. In wet ecosystems, high soil moisture limited increases in respiration relative to increases in photosynthesis. Warming generally increased GEP, with the notable exception of the Toolik Lake moist ecosystem, where warming unexpectedly decreased GEP 〉25%. Overall, the respiration response determined the effect of warming on ecosystem CO2 balance. Our results provide the first multiple-site comparison of arctic tundra CO2 flux responses to standard warming treatments across a large climate gradient. These results indicate that (1) dry tundra may be initially the most responsive ecosystems to climate warming by virtue of strong increases in ER, (2) moist and wet tundra responses are dampened by higher water tables and soil water contents, and (3) both GEP and ER are responsive to climate warming, but the magnitudes and directions are ecosystem-dependent.
    Keywords: Alaska, USA; Alexandra Fiord; Area/locality; Atqasuk; Barrow; Barrow, Alaska, USA; Comment; Degree days, thawing; ELEVATION; Ellesmere Island, Canadian Arctic Archipelago; Event label; International Polar Year (2007-2008); IPY; ITEX_AF; ITEX_AT; ITEX_BA; ITEX_TL; Latitude of event; Longitude of event; Monitoring station; MONS; Precipitation, sum; Temperature, air, annual mean; Temperature, air, monthly mean; Toolik Lake; Toolik Lake, Alaska
    Type: Dataset
    Format: text/tab-separated-values, 20 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bradford : Emerald
    Industrial robot 32 (2005), S. 24-31 
    ISSN: 0143-991X
    Source: Emerald Fulltext Archive Database 1994-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Purpose - Selection of an effective grasp of a complex object using a multifingered gripper is a challenging problem because of the many possible grasp positions that are typically available. Design/methodology/approach - Given the geometrical description of the particular object feature to be grasped, all feasible grasps are performed in offline simulation using a geometrically accurate model of the desired gripper. The six-dimensional convex hull for each grasp is computed and archived. This convex hull indicates the span of forces and torques that the grasp can resist. When a grasp is needed the force/torque due to the total object weight is estimated and the best grasp is selected. The selected grasp has minimum peak contact force consistent with equilibrium. Findings - Experimental trials with several complex object show the method is capable of producing grasps which can support the object and resist external force/torque. Research limitations/implications - An accurate geometrical description of the feature to be grasped must be known in advance. This would typically be a cylindrical or prismatic portion of the object. Practical implications - There are many environments in which a dexterous multifingered gripper must be used due to the variety of objects which must be grasped. The results indicate that effective grasps can be selected for complex objects from a database of simulated grasps. Originality/value - The primary contribution of this paper is the use of a database of simulated grasps on simple graspable features to synthesize grasps on complex objects.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK; Malden, US : Munksgaard International Publishers
    Physiologia plantarum 120 (2004), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Shoot physiological activity in arctic vascular plants may be controlled by low soil temperatures. While leaves may be exposed to moderate temperatures during the growing season, root temperatures often remain near freezing. In this study, two tundra sedges, Eriophorum vaginatum and Carex bigellowii, were subjected to reduced soil temperatures, and photosynthetic parameters (light saturated photosynthesis Amax, variable to maximal fluorescence and Fv/Fm stomatal conductance) and abscisic acid concentrations were determined. Stomatal conductance and Amax for both E. vaginatum and C. bigellowii strongly decreased with declining soil temperatures. Decreasing soil temperature, however, impacted Fv/Fm to a much lesser degree. Root and leaf ABA concentrations increased with decreasing root temperature. These observations support the contention that soil temperature is a significant photosynthetic driving factor in arctic sedges exposed to variable root and shoot temperatures. Because these two species comprise approximately 30% of the vascular ground cover of wet tussock tundra, the soil temperature responses of these sedges potentially scale up to significant effects on ecosystem carbon exchange.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of intelligent and robotic systems 6 (1992), S. 183-201 
    ISSN: 1573-0409
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The ability to command actuator torque is necessary to perform research into robot control. Commercial manipulators using direct-drive actuators offer high performance, but do not allow specification of actuator torque. We experimentally characterize the motors in an Adept-2 manipulator, and develop a linearizing and decoupling controller which allows torque specification. Torque ripple is 13%.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-06-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: © Soil Science Society of America, 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Vadose Zone Journal 17 (2018): 170177, doi:10.2136/vzj2017.10.0177.
    Description: Technological advances have allowed in situ monitoring of soil water content in an automated manner. These advances, along with an increase in large-scale networks monitoring soil water content, stress the need for a robust calibration framework that ensures that soil water content measurements are accurate and reliable. We have developed an approach to make consistent and comparable soil water content sensor calibrations across a continental-scale network in a production framework that incorporates a thorough accounting of uncertainties. More than 150 soil blocks of varying characteristics from 33 locations across the United States were used to generate soil-specific calibration coefficients for a capacitance sensor. We found that the manufacturer’s nominal calibration coefficients poorly fit the data for nearly all soil types. This resulted in negative (91% of samples) and positive (5% of samples) biases and a mean root mean square error (RMSE) of 0.123 cm3 cm−3 (1σ) relative to reference standard measurements. We derived soil-specific coefficients, and when used with the manufacturer’s nominal function, the biases were corrected and the mean RMSE dropped to ±0.017 cm3 cm−3 (±1σ). A logistic calibration function further reduced the mean RMSE to ±0.016 cm3 cm−3 (±1σ) and increased the range of soil moistures to which the calibration applied by 18% compared with the manufacturer’s function. However, the uncertainty of the reference standard was notable (±0.022 cm3 cm−3), and when propagated in quadrature with RMSE estimates, the combined uncertainty of the calibrated volumetric soil water content values increased to ±0.028 cm3 cm−3 regardless of the calibration function used.
    Description: We acknowledge the National Science Foundation (NSF) for on-going support. NEON is a project sponsored by the NSF and managed under cooperative support agreement (EF-1029808) to Battelle.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Environmental Research Letters 11 (2016): 034014, doi:10.1088/1748-9326/11/3/034014.
    Description: As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%–85% of permafrost carbon release can still be avoided if human emissions are actively reduced.
    Description: This work was supported by the National Science Foundation ARCSS program and Vulnerability of Permafrost Carbon Research Coordination Network (grants OPP-0806465, OPP-0806394, and 955713) with additional funding from SITES (Swedish Science Foundation), Future Forest (Mistra), and a Marie Curie International Reintegration Grant (TOMCAR-Permafrost #277059) within the 7th European Community Framework Programme.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chu, H., Luo, X., Ouyang, Z., Chan, W. S., Dengel, S., Biraud, S. C., Torn, M. S., Metzger, S., Kumar, J., Arain, M. A., Arkebauer, T. J., Baldocchi, D., Bernacchi, C., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer, G., Bracho, R., Brown, S., Brunsell, N. A., Chen, J., Chen, X., Clark, K., Desai, A. R., Duman, T., Durden, D., Fares, S., Forbrich, I., Gamon, J. A., Gough, C. M., Griffis, T., Helbig, M., Hollinger, D., Humphreys, E., Ikawa, H., Iwata, H., Ju, Y., Knowles, J. F., Knox, S. H., Kobayashi, H., Kolb, T., Law, B., Lee, X., Litvak, M., Liu, H., Munger, J. W., Noormets, A., Novick, K., Oberbauer, S. F., Oechel, W., Oikawa, P., Papuga, S. A., Pendall, E., Prajapati, P., Prueger, J., Quinton, W. L., Richardson, A. D., Russell, E. S., Scott, R. L., Starr, G., Staebler, R., Stoy, P. C., Stuart-Haentjens, E., Sonnentag, O., Sullivan, R. C., Suyker, A., Ueyama, M., Vargas, R., Wood, J. D., & Zona, D. Representativeness of eddy-covariance flux footprints for areas surrounding AmeriFlux sites. Agricultural and Forest Meteorology, 301, (2021): 108350, https://doi.org/10.1016/j.agrformet.2021.108350.
    Description: Large datasets of greenhouse gas and energy surface-atmosphere fluxes measured with the eddy-covariance technique (e.g., FLUXNET2015, AmeriFlux BASE) are widely used to benchmark models and remote-sensing products. This study addresses one of the major challenges facing model-data integration: To what spatial extent do flux measurements taken at individual eddy-covariance sites reflect model- or satellite-based grid cells? We evaluate flux footprints—the temporally dynamic source areas that contribute to measured fluxes—and the representativeness of these footprints for target areas (e.g., within 250–3000 m radii around flux towers) that are often used in flux-data synthesis and modeling studies. We examine the land-cover composition and vegetation characteristics, represented here by the Enhanced Vegetation Index (EVI), in the flux footprints and target areas across 214 AmeriFlux sites, and evaluate potential biases as a consequence of the footprint-to-target-area mismatch. Monthly 80% footprint climatologies vary across sites and through time ranging four orders of magnitude from 103 to 107 m2 due to the measurement heights, underlying vegetation- and ground-surface characteristics, wind directions, and turbulent state of the atmosphere. Few eddy-covariance sites are located in a truly homogeneous landscape. Thus, the common model-data integration approaches that use a fixed-extent target area across sites introduce biases on the order of 4%–20% for EVI and 6%–20% for the dominant land cover percentage. These biases are site-specific functions of measurement heights, target area extents, and land-surface characteristics. We advocate that flux datasets need to be used with footprint awareness, especially in research and applications that benchmark against models and data products with explicit spatial information. We propose a simple representativeness index based on our evaluations that can be used as a guide to identify site-periods suitable for specific applications and to provide general guidance for data use.
    Description: We thank the AmeriFlux site teams for sharing their data and metadata with the network. Funding for these flux sites is acknowledged in the site data DOI, shown in Table S1. This analysis was supported in part by funding provided to the AmeriFlux Management Project by the U.S. Department of Energy's Office of Science under Contract No. DE-AC02-05CH11231. All footprint climatologies, site-level representativeness indices, and monthly EVI and sensor location biases can be accessed via the Zenodo Data Repository (Datasets S1–S6, http://doi.org/10.5281/zenodo.4015350).
    Keywords: Flux footprint ; Spatial representativeness ; Landsat EVI ; Land cover ; Sensor location bias ; Model-data benchmarking
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-01-13
    Print ISSN: 0923-4861
    Electronic ISSN: 1572-9834
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...