ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Euphytica 85 (1955), S. 149-158 
    ISSN: 1573-5060
    Keywords: plant genetic engineering ; virus-resistant transgenic plants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Transgenic virus-resistant plants were first produced in 1986 by genetically engineering tobacco plants to express the coat protein of tobacco mosaic virus. The introduction of coat protein transgenes has since proved to be an extremely effective and generally applicable approach to engineering virus resistance in crop plants. Extensive field trials with transgenic, virus-resistant tobacco, tomato, potato and cucumber lines have confirmed not only the durability of the resistance under natural conditions but the ease with which virus-resistant lines retaining the original cultivar traits can be recovered. A number of alternative anti-viral strategies based on transgenes from a surprisingly wide variety of sources have also been developed. These include the use of viral genes coding for proteins involved in the replication cycle and in systemic transport of viruses within the plant, the use of interfering viral RNA sequences, and the use of transgenes derived from plant and animal sources. In the latter category, the use of mammalian antibodies to confer disease resistance in plants is a particularly exciting new development. Considerable progress has also been made towards the molecular cloning of natural anti-viral resistance genes in plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-03-06
    Description: The discovery and use of genetic markers associated with carotenoid levels can help to exploit the genetic potential of maize for provitamin A accumulation more effectively. Provitamin A carotenoids are classes of carotenoids that are precursors of vitamin A, an essential micronutrient in humans. Vitamin A deficiency is a global public health problem affecting millions of people, especially in developing countries. Maize is one of the most important staple crops targeted for provitamin A biofortification to help alleviate vitamin A deficiency in developing countries. A genome-wide association study (GWAS) of maize endosperm carotenoids was conducted using a panel of 130 diverse yellow maize tropical inbred lines genotyped with Genotyping by Sequencing (GBS) SNP markers. Numerous significant association signals co-localizing with the known carotenoid biosynthesis genes crtRB1 , lcyE and ZEP1 were identified. The GWAS confirmed previously reported large effects of the two major carotenoid biosynthesis genes lcyE and crtRB1 . In addition, significant novel associations were detected for several transcription factors ( e.g. , RING zinc finger domain and HLH DNA-binding domain super family proteins) that may be involved in regulation of carotenoid biosynthesis in maize. When the GWAS was re-conducted by including the major effects of lcyE and crtRB1 genes as covariates, a SNP in a gene coding for an auxin response factor 20 transcription factor was identified which displayed an association with β-carotene and provitamin A levels. Our study provides a foundation for design and implementation of genomics-assisted selection strategies for provitamin A maize breeding in tropical regions, and advances efforts toward identification of additional genes (and allelic variants) involved in the regulation of carotenoid biosynthesis in plants.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2024-02-13
    Description: Agricultural sustainability faces challenges in the changing climate, particularly for rain-fed systems like those in Ethiopia. This study examines the combined impacts of climate change and soil acidity on future crop potential, focusing on Ethiopia as a case study. The EcoCrop crop suitability model was parameterized and run for four key food crops in Ethiopia (teff, maize, barley and common wheat), under current and mid-century climate conditions. To assess the impacts of soil acidification on crop suitability, a simulation study was conducted by lowering the soil pH values by 0.5, 1.0 and 1.5 and re-running the suitability model, comparing the changes in the area suitable for each crop. Our evaluation of the model, by comparing the modeled suitable areas with reference data, indicated that there was a good fit for all the four crops. Using default soil pH values, we project that there will be no significant changes in the suitability of maize, barley and wheat and an increase in the suitability of teff by the mid-century, as influenced by projected increases in rainfall in the country. Our results demonstrate a direct relationship between the lowering of soil pH and increasing losses in the area suitable for all crops, but especially for teff, barley and wheat. We conclude that soil acidification can have a strong impact on crop suitability in Ethiopia under climate change, and precautionary measures to avoid soil acidification should be a key element in the design of climate change adaptation strategies.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...