ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
  • 3
    Publication Date: 2009-09-23
    Description: In this paper we describe the results of a project ongoing at the Istituto Nazionale di Geofisica e Vulcanologia (INGV). The objective is to develop and implement a system for monitoring and forecasting volcanic plumes of Etna. Monitoring is based at present by multispectral infrared measurements from the Spin Enhanced Visible and Infrared Imager on board the Meteosat Second Generation geosynchronous satellite, visual and thermal cameras, and three radar disdrometers able to detect ash dispersal and fallout. Forecasting is performed by using automatic procedures for: i) downloading weather forecast data from meteorological mesoscale models; ii) running models of tephra dispersal, iii) plotting hazard maps of volcanic ash dispersal and deposition for certain scenarios and, iv) publishing the results on a web-site dedicated to the Italian Civil Protection. Simulations are based on eruptive scenarios obtained by analysing field data collected after the end of recent Etna eruptions. Forecasting is, hence, supported by plume observations carried out by the monitoring system. The system was tested on some explosive events occurred during 2006 and 2007 successfully. The potentiality use of monitoring and forecasting Etna volcanic plumes, in a way to prevent threats to aviation from volcanic ash, is finally discussed.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-12-21
    Description: Volcanic ash clouds produced by explosive eruptions represent a strong problem for civil aviation, road transportation and other human activities. Since Etna volcano produced in the last 35 years more the 200 explosive eruptions of small and medium size. The INGV, liable for its volcano monitoring, developed since 2006 a specific system for forecasting and monitoring Etna’s volcanic ash plumes in collaboration with several national and international institutions. Between 12 January 2011 and 31 December 2013 Etna produced forty-six basaltic lava fountains. Every paroxysm produced an eruption column ranging from a few up to eleven kilometers of height above sea level. The ash cloud contaminated the controlled airspace (CTR) of Catania and Reggio Calabria airports and caused tephra fallout on eastern Sicily sometime disrupting the operations of these airports. In order to give prompt and detailed warnings to the Aviation and Civil Protection authorities, ash plumes monitoring at Osservatorio Etneo, the INGV department in Catania, is carried out using multispectral (from visible to infrared) satellite and ground-based video-surveillance images; seismic and infrasound signals processed in real-time, a Doppler RADAR (Voldorad IIB) able to detect the eruption column in all weather conditions and a LIDAR (AMPLE) for retrieving backscattering and depolarization values of the ash clouds. Forecasting is performed running tephra dispersal models using weather forecast data, and then plotting results on maps published on a dedicated website. 24/7 Control Room operators were able to timely nform Aviation and Civil Protection operators for an effective aviation safety management. A variety of multidisciplinary activities are planned in the MED-SUV project with reference to volcanic ash observations and studies. These include: 1) physical and analogue laboratory experiments on ash dispersal and aggregation; 2) integration of satellite data (e.g. METEOSAT, MODIS) and ground- based measurements (e.g., RADAR, LIDAR) of Etna’s volcanic plumes to quantify mass eruption rate, grain-size distribution at source, and ash cloud concentration; 3) improvement of tools and automatic procedures for the short-term forecasting of volcanic ash dispersal by adopting a multi-model and multi-scenario approach; 4) development of short-term forecasting tools able to use direct measurements of the plume and ash cloud in almost real time (now-casting); 5) development of long-term probabilistic ash fallout maps at the supersite volcanoes.
    Description: Published
    Description: Vienna, Austria
    Description: 4V. Vulcani e ambiente
    Description: open
    Keywords: Ash plume monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: In this paper we present a new statistical approach able to provide tephra deposit load and ash concentration using PUFF, a lagrangian model widely used to forecast volcanic ash dispersal during volcanic crisis. We perform a parametric study in order to analyze the influence of each input parameter on model outputs. For this test, we simulate two eruptive scenarios like to the 2001 (Scenario 1) and 1998 (Scenario 2) Etna eruptions using high resolution weather data and a domain of 170 x 170 km. Results show that for both scenarios, we are able to calculate the tephra deposit load and ash concentration but the use of millions of particles is required. Specifically, up to 33 and 220 millions of particles were necessary to accurately predict the tephra deposit and ash concentration in air, respectively. This is approximately two orders of magnitude larger than values typically considered running PUFF. The parametric study shows that the horizontal diffusion coefficient, the time step of the simulations, the topography and the standard deviation of the particle distribution greatly affect the model outputs. We also validate the model by best fit procedures. Results show a good comparison between field data of the 2001 Etna eruption and PUFF simulations, being inside 5 and 1/5 times the observed data, comparable with results of Eulerian models. This work will allow to reliably outlining the areas of contaminated airspace using PUFF or any other lagrangian model in order to define the No Fly Zone and ensure the safety to aviation operations as required after the Eyjafjallajökull eruption.
    Description: In press
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: open
    Keywords: ash dispersal ; PUFF model; ; 01. Atmosphere::01.02. Ionosphere::01.02.03. Forecasts
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: In this paper we describe the results of a project ongoing at the Istituto Nazionale di Geofisica e Vulcanologia (INGV). The objective is to develop and implement a system for monitoring and forecasting volcanic plumes of Etna. Monitoring is based at present by multispectral infrared measurements from the Spin Enhanced Visible and Infrared Imager on board the Meteosat Second Generation geosynchronous satellite, visual and thermal cameras, and three radar disdrometers able to detect ash dispersal and fallout. Forecasting is performed by using automatic procedures for: i) downloading weather forecast data from meteorological mesoscale models; ii) running models of tephra dispersal, iii) plotting hazard maps of volcanic ash dispersal and deposition for certain scenarios and, iv) publishing the results on a web-site dedicated to the Italian Civil Protection. Simulations are based on eruptive scenarios obtained by analysing field data collected after the end of recent Etna eruptions. Forecasting is, hence, supported by plume observations carried out by the monitoring system. The system was tested on some explosive events occurred during 2006 and 2007 successfully. The potentiality use of monitoring and forecasting Etna volcanic plumes, in a way to prevent threats to aviation from volcanic ash, is finally discussed.
    Description: FIRB Italian project “Sviluppo Nuove Tecnologie per la Protezione e Difesa del Territorio dai Rischi Naturali” funded by Italian Minister of University and Research
    Description: Published
    Description: 1573–1585
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: open
    Keywords: volcanic ash ; monitoring and forecasting ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: In this paper we present a new statistical approach which provides tephra deposit load and ash concentration using PUFF, a Lagrangian model widely used to forecast volcanic ash dispersal during volcanic crisis. We perform a parametric study in order to analyze the influence of each input parameter on model outputs. For this test, we simulate two eruptive scenarios similar to the 2001 (Scenario 1) and 1998 (Scenario 2) Etna eruptions using high resolution weather data and a domain of 170×170 km. Results show that for both scenarios, we are able to calculate the tephra deposit load and ash concentration but the use of millions of particles is required. Specifically, up to 33 and 220 millions of particles were necessary to accurately predict the tephra deposit and ash concentration in air, respectively. This is approximately two orders of magnitude larger than the values typically considered running PUFF. The parametric study shows that the horizontal diffusion coefficient, the time step of the simulations, the topography and the standard deviation of the particle distribution greatly affect the model outputs. We also validate the model by best-fit procedures. Results show a good comparison between field data of the 2001 Etna eruption and PUFF simulations, being inside 5 and 1/5 times the observed data, comparable with results of Eulerian models. This work will allow to reliably outline the areas of contaminated airspace using PUFF or any other Lagrangian model in order to define the No Fly Zone and ensure the safety aviation operations as required after the Eyjafjallajökull eruption
    Description: Published
    Description: 129-142
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: ash dispersal ; 05. General::05.01. Computational geophysics::05.01.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: RADIOSONDAGGI ATMOSFERICI NELL’AREA ETNEA
    Description: Published
    Description: 1-20
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: N/A or not JCR
    Description: open
    Keywords: radisondaggio ; Etna ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: In this paper, we use calibrated images collected by the video-surveillance system of the Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, to retrieve the height of the eruption column during the recent Etna explosive activity. The analysis is carried out on nineteen lava fountains from the New South East Crater dataset. The novel procedure described in this work is achieved in three main steps: at first we calibrated the camera, then we selected the images which recorded the maximum phase of the eruptive activity, and finally we applied an appropriate correction to account for the plume projection on the camera line of sight due to the wind. The results show that the column altitudes range between 6 and 9 km (upper limit of the camera system). The comparison with the plume height values estimated from the analysis of several SEVIRI and MODIS satellite images, show a good agreement. Finally, for nine events we also evaluated the thickness of the volcanic plumes in the umbrella region which ranges between 2 and 3 km.
    Description: Published
    Description: S0214
    Description: 3V. Dinamiche e scenari eruttivi
    Description: JCR Journal
    Description: open
    Keywords: column height ; Etna eruption ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: The eruption column height estimation is an essential parameter to evaluate the total mass eruption rate, the gas and aerosol plume dispersal and retrievals. The column height may be estimated using different systems (e.g. satellite, aircraft and ground observations) which may present marked differences. In this work we use the calibrated images collected by the video-surveillance system of the Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, from the visible camera located in Catania, 27 km from the vent. The analysis is carried out on twenty lava fountains from the New South East Crater during the recent Etna explosive activity. Firstly, we calibrated the camera to estimate its intrinsic parameters and the full camera model. Furthermore, we selected the images which recorded the maximum phase of the eruptive activity. Hence, we applied an appropriate correction to take into account the wind effect. The column height was also evaluated using SEVIRI and MODIS satellite images collected at the same time of the video camera measurements. The satellite column height retrievals is realized by comparing the 11 m brightness temperature of the most opaque plume pixels with the atmospheric temperature profile measured at Trapani WMO Meteo station (the nearest WMO station to the Etnean area). The comparison between satellite and ground data show a good agreement and the column altitudes ranges between 7.5 and 9 km (upper limit of the camera system). For nine events we evaluated also the thickness of the volcanic plumes in the umbrella region (near the vent) which ranges between 2 and 3 km. The proposed approach help to quantitatively evaluate the column height that may be used by volcanic ash dispersal and sedimentation models for improving forecasts and reducing risks to aviation during volcanic crisis.
    Description: Published
    Description: Vienna, Austria
    Description: 4V. Vulcani e ambiente
    Description: open
    Keywords: Eruption, Coluumn, satellite ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...