ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Smith, Helen Elizabeth Katie; Poulton, Alex J; Garley, Rebecca; Hopkins, Jason; Lubelczyk, Laura C; Drapeau, Dave T; Rauschenberg, Sara; Twining, Ben S; Bates, Nicolas R; Balch, William M (2017): The Influence of Environmental Variability on the Biogeography of Coccolithophores and Diatoms in the Great Calcite Belt. Biogeosciences Discussions, 35 pp, https://doi.org/10.5194/bg-2017-110
    Publication Date: 2023-10-14
    Description: This data was collected as part of the Great Calcite Belt project, from 60W to 120E and 30S to 60S. during MV1101 onboard R/V Melville, January- February 2011 in the South Atlantic Ocean and RR1202 onboard the R/V Roger Revelle, February-March 2012 in the South Indian Ocean. Samples for biomineralizing phytoplankton community structure were taken from the upper 30 m of the water column. This data consists of coccolithophore and diatom cell abundances.
    Keywords: Acanthoica quattrospina; Actinocyclus sp.; Alisphaera sp.; Asteromphalus sp.; Azpeitia; Calcidiscus leptoporus; Calciopappus sp.; Calciosolenia sp.; Chaetoceros aequatorialis; Chaetoceros aequatorialis var. antarctica; Chaetoceros atlanticus; Chaetoceros bulbosus; Chaetoceros castracanei; Chaetoceros cf. atlanticus; Chaetoceros cf. pendulus; Chaetoceros concavicornis; Chaetoceros convolutus; Chaetoceros debilis; Chaetoceros dichaeta; Chaetoceros laciniosus; Chaetoceros peruvianus; Chaetoceros radicans; Chaetoceros sp.; Chaetoceros spp.; Coccolithophores; Corethron inerme; Corisphaera gracilis; Coronosphaera mediterranea; Coscinodiscus sp.; CTD/Rosette; CTD-RO; Cylindrotheca closterium; Dactyliosolen spp.; Date/Time of event; DEPTH, water; Diatoms; Diatoms, centrales; Diatoms, pennales; Discosphaera tubifera; Emiliania huxleyi; Eucampia sp.; Event label; Fragilariopsis curta; Fragilariopsis cylindrus; Fragilariopsis kerguelensis; Fragilariopsis nana; Fragilariopsis pseudonana; Fragilariopsis rhombica; Fragilariopsis ritscheri; Fragilariopsis separanda; Fragilariopsis spp.; Gephyrocapsa ericsonii; Gephyrocapsa mullerae; GreatCalciteBelt; Haslea sp.; Helicosphaera spp.; Holococcolithophore stage of life-cycle; Homozygosphaera sp.; Indian Ocean; Latitude of event; Leptocylindrus mediterraneus; Longitude of event; Melville; Membraneis sp.; Michaelsarsia sp.; Minidiscus sp.; MV1101; MV1101_GCB1-101; MV1101_GCB1-109; MV1101_GCB1-117; MV1101_GCB1-16; MV1101_GCB1-25; MV1101_GCB1-32; MV1101_GCB1-46; MV1101_GCB1-59; MV1101_GCB1-6; MV1101_GCB1-70; MV1101_GCB1-77; MV1101_GCB1-85; MV1101_GCB1-92; Nanoneis hasleae; Navicula sp.; Nitzschia; Nitzschia acicularis; Nitzschia bicapitata; Nitzschia braarudii; Nitzschia longissima; Nitzschia sicula var. bicuneata; Oolithotus sp.; Ophiaster sp.; Palusphaera sp.; Papposphaera sp.; Porosira glacialis; Proboscia sp.; Pseudo-nitzschia sp.; Rhabdosphaera sp.; Rhizosolenia sp.; Roger A. Revelle; RR1202; RR1202_GCB2-100; RR1202_GCB2-106; RR1202_GCB2-112; RR1202_GCB2-119; RR1202_GCB2-13; RR1202_GCB2-27; RR1202_GCB2-36; RR1202_GCB2-43; RR1202_GCB2-5; RR1202_GCB2-53; RR1202_GCB2-63; RR1202_GCB2-73; RR1202_GCB2-87; RR1202_GCB2-93; Scanning electron microscope (Leo 1450VP, Carl Zeiss) with software SmartSEM; Scotia Sea; South Atlantic Ocean; Syracosphaera molischii; Syracosphaera nodosa spp.; Syracosphaera pulchra; Syracosphaera pulchra spp.; Syracosphaera sp.; Thalassionema nitzschioides; Thalassiosira ambigua; Thalassiosira antarctica; Thalassiosira cf. lineata; Thalassiosira cf. oestrupii; Thalassiosira cf. symmetrica; Thalassiosira dichotomica; Thalassiosira ferelineata; Thalassiosira frenguellii; Thalassiosira frenguelliopsis; Thalassiosira gracilis var. expecta; Thalassiosira gracilis var. gracilis; Thalassiosira gravida; Thalassiosira lentiginosa; Thalassiosira oceanica; Thalassiosira partheneia; Thalassiosira perpusilla; Thalassiosira poroseriata; Thalassiosira spp.; Thalassiosira trifulta; Thalassiosira tumida; Thalassiothrix antarctica; The Great Southern Coccolithophore Belt; Umbellosphaera tenuis; Umbilicosphaera
    Type: Dataset
    Format: text/tab-separated-values, 2889 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-11-25
    Description: Coccolithophores are globally important marine calcifying phytoplankton. They contribute to the organic carbon pump through the primary production and the ballast of organic matter, and to the carbonate pump through the production of calcium carbonate. Here we compiled all available scanning electron microscopy (SEM) coccolithophore abundance observations. Taxa were standardized following NannoTax3 to a species level where possible. Subspecies (e.a. C. leptoporus subsp. leptoporus and C. leptoporus subsp. quadriperforatus) were grouped as single species. The database contains 2556 abundance observations from 35 different publications. The data span the period of 1993-2017, with observations from all ocean basins and all seasons, and at depths ranging from the surface to 5000 m. We limited our compilation to SEM observations (or observations which further identified samples with SEM) because SEM provides greater detail of coccolithophore diversity than more commonly used polarized light microscopy. Although this limits the number of observations, this allows for a more in-depth analysis of coccolithophore ecology, such as the ecological significance of the coccolithophore life cycle.
    Keywords: Acanthoica acanthifera; Acanthoica acanthos; Acanthoica biscayensis; Acanthoica maxima; Acanthoica quattrospina; Acanthoica spp.; Algirosphaera cucullata; Algirosphaera robusta; Algirosphaera spp.; Alisphaera capulata; Alisphaera extenta; Alisphaera gaudii; Alisphaera ordinata; Alisphaera pinnigera; Alisphaera quadrilatera; Alisphaera spp.; Alisphaera unicornis; Anthosphaera lafourcadii; Anthosphaera periperforata; Anthosphaera spp.; Balaniger virgulosa; Braarudosphaera bigelowii; Calcidiscus leptoporus; Calcidiscus spp.; Calciopappus caudatus; Calciopappus spp.; Calciosolenia brasiliensis; Calciosoleniaceae spp.; Calciosolenia murrayi; Calciosolenia spp.; Calicasphaera blokii; Calicasphaera concava; Calicasphaera diconstricta; Calyptrolithina multipora; Calyptrosphaera cialdii; Calyptrosphaera dentata; Calyptrosphaera heimdalae; Calyptrosphaera sphaeroidea; Canistrolithus spp.; Canistrolithus valliformis; Ceratolithus cristatus; Ceratolithus spp.; Chrysotila carterae; Chrysotila roscoffensis; Coccoliths, other; Coccolithus pelagicus; Corisphaera gracilis; Corisphaera spp.; Corisphaera tyrrheniensis; Coronosphaera maxima; Coronosphaera mediterranea; Coronosphaera spp.; Cyrtosphaera aculeata; Cyrtosphaera cidaris; Cyrtosphaera spp.; DATE/TIME; DEPTH, water; Discosphaera tubifera; Emiliania huxleyi; Ericiolus sp.; Florisphaera profunda; Flosculosphaera calceolariopsis; Formonsella pyramidosa; Gephyrocapsa ericsonii; Gephyrocapsa muellerae; Gephyrocapsa oceanica; Gephyrocapsa ornata; Gephyrocapsa spp.; Gladiolithus flabellatus; Gliscolithus amitakareniae; Hayaster perplexus; Helicosphaera carteri; Helicosphaera cornifera; Helicosphaera hyalina; Helicosphaera pavimentum; Helicosphaera spp.; Helicosphaera wallichii; Helladosphaera cornifera; Helladosphaera pienaarii; Helladosphaera vavilovii; Heterococcolithophores; Holococcolithophora kastriensis; Holococcolithophore spp.; Homozygosphaera spinosa; Homozygosphaera spp.; Homozygosphaera triarcha; Homozygosphaera vercelli; Hughesius youngii; Hymenomonas lacuna; Hymenomonas roseola; Hymenomonas spp.; Jomonlithus spp.; LATITUDE; LONGITUDE; Michaelsarsia adriaticus; Michaelsarsia elegans; Michaelsarsia spp.; Ochrosphaera neapolitana; Oolithotus antillarum; Oolithotus fragilis; Oolithotus spp.; Ophiaster formosus; Ophiaster hydroideus; Ophiaster minimus; Ophiaster reductus; Ophiaster spp.; Palusphaera sp.; Palusphaera spp.; Palusphaera vandelii; Pappomonas borealis; Pappomonas flabellifera; Pappomonas sp.; Pappomonas spp.; Papposphaera arctica; Papposphaera lepida; Papposphaera sagittifera; Papposphaera sp.; Papposphaera spp.; Papposphaera thomsenii; Picarola margalefii; Placorhombus ziveriae; Polycrater sp.; Polycrater spp.; Pontosphaera discopora; Pontosphaera japonica; Pontosphaera multipora; Pontosphaera spp.; Pontosphaera syracusana; Poricalyptra aurisinae; Poricalyptra isselii; Poricalyptra magnaghii; Poritectolithus maximus; Poritectolithus poritectum; Pseudowigwamma scenozonion; Reference/source; Reticulofenestra parvula; Reticulofenestra sessilis; Reticulofenestra spp.; Rhabdosphaera clavigera; Rhabdosphaera spp.; Rhabdosphaera xiphos; Sample method; Scyphosphaera apsteinii; Scyphosphaera spp.; see sample method; Solisphaera helianthiformis; Solisphaera spp.; Sphaerocalyptra adenensis; Sphaerocalyptra dermitzakii; Sphaerocalyptra quadridentata; Sphaerocalyptra sp.; Sphaerocalyptra spp.; Syracolithus bicorium; Syracolithus quadriperforatus; Syracolithus schilleri; Syracolithus sp.; Syracolithus spp.; Syracosphaera amoena; Syracosphaera ampliora; Syracosphaera anthos; Syracosphaera arethusae; Syracosphaera bannockii; Syracosphaera borealis; Syracosphaera castellata; Syracosphaera corolla; Syracosphaera delicata; Syracosphaera dilatata; Syracosphaera epigrosa; Syracosphaera exigua; Syracosphaera florida; Syracosphaera gaarderae; Syracosphaera halldalii; Syracosphaera hastata; Syracosphaera histrica; Syracosphaera lamina; Syracosphaera leptolepis; Syracosphaera marginiporata; Syracosphaera molischii; Syracosphaera nana; Syracosphaera nodosa; Syracosphaera noroitica; Syracosphaera orbiculus; Syracosphaera ossa; Syracosphaera prolongata; Syracosphaera protrudens; Syracosphaera pulchra; Syracosphaera reniformis; Syracosphaera rotula; Syracosphaera sp.; Syracosphaera spp.; Syracosphaera squamosa; Syracosphaera strigilis; Syracosphaera tumularis; Tergestiella adriatica; Tetralithoides quadrilaminata; Turrilithus latericioides; Turrisphaera spp.; Umbellosphaera irregularis; Umbellosphaera spp.; Umbellosphaera tenuis; Umbilicosphaera anulus; Umbilicosphaera foliosa; Umbilicosphaera hulburtiana; Umbilicosphaera sibogae; Umbilicosphaera spp.; Wigwamma antarctica; Wigwamma spp.; Wigwamma triradiata; Zygosphaera amoena; Zygosphaera marsilii
    Type: Dataset
    Format: text/tab-separated-values, 685008 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Smith, Helen Elizabeth Katie; Tyrrell, Toby; Charalampopoulou, Anastasia; Dumousseaud, Cynthia; Legge, Oliver J; Birchenough, Sarah; Pettit, Laura Rachel; Garley, Rebecca; Hartman, Sue E; Hartman, Mark C; Sagoo, Navjit; Daniels, Chris J; Achterberg, Eric Pieter; Hydes, D J (2012): Predominance of heavily calcified coccolithophores at low CaCO3 saturation during winter in the Bay of Biscay. Proceedings of the National Academy of Sciences, 109(23), 8845-8849, https://doi.org/10.1073/pnas.1117508109
    Publication Date: 2024-03-15
    Description: Coccolithophores are an important component of the Earth system, and, as calcifiers, their possible susceptibility to ocean acidification is of major concern. Laboratory studies at enhanced pCO2 levels have produced divergent results without overall consensus. However, it has been predicted from these studies that, although calcification may not be depressed in all species, acidification will produce "a transition in dominance from more to less heavily calcified coccolithophores" [Ridgwell A, et al., (2009) Biogeosciences 6:2611-2623]. A recent observational study [Beaufort L, et al., (2011) Nature 476:80-83] also suggested that coccolithophores are less calcified in more acidic conditions. We present the results of a large observational study of coccolithophore morphology in the Bay of Biscay. Samples were collected once a month for over a year, along a 1,000-km-long transect. Our data clearly show that there is a pronounced seasonality in the morphotypes of Emiliania huxleyi, the most abundant coccolithophore species. Whereas pH and CaCO3 saturation are lowest in winter, the E. huxleyi population shifts from 〈10% (summer) to 〉90% (winter) of the heavily calcified form. However, it is unlikely that the shifts in carbonate chemistry alone caused the morphotype shift. Our finding that the most heavily calcified morphotype dominates when conditions are most acidic is contrary to the earlier predictions and raises further questions about the fate of coccolithophores in a high-CO2 world.
    Keywords: Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Biomass/Abundance/Elemental composition; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell density; Cell density, standard error; Chromista; Coast and continental shelf; Coccoliths, overcalcified; Confidence interval; Coulometric titration; Counting; DATE/TIME; Emiliania huxleyi; Field observation; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Haptophyta; LATITUDE; LONGITUDE; North Atlantic; Number of measurements; OA-ICC; Ocean Acidification International Coordination Centre; Open ocean; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphate; Phytoplankton; Potentiometric titration; Salinity; Silicate; Single species; Species; Temperate; Temperature, water; Volume
    Type: Dataset
    Format: text/tab-separated-values, 13730 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...