ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-11-11
    Description: Ischaemia-reperfusion injury occurs when the blood supply to an organ is disrupted and then restored, and underlies many disorders, notably heart attack and stroke. While reperfusion of ischaemic tissue is essential for survival, it also initiates oxidative damage, cell death and aberrant immune responses through the generation of mitochondrial reactive oxygen species (ROS). Although mitochondrial ROS production in ischaemia reperfusion is established, it has generally been considered a nonspecific response to reperfusion. Here we develop a comparative in vivo metabolomic analysis, and unexpectedly identify widely conserved metabolic pathways responsible for mitochondrial ROS production during ischaemia reperfusion. We show that selective accumulation of the citric acid cycle intermediate succinate is a universal metabolic signature of ischaemia in a range of tissues and is responsible for mitochondrial ROS production during reperfusion. Ischaemic succinate accumulation arises from reversal of succinate dehydrogenase, which in turn is driven by fumarate overflow from purine nucleotide breakdown and partial reversal of the malate/aspartate shuttle. After reperfusion, the accumulated succinate is rapidly re-oxidized by succinate dehydrogenase, driving extensive ROS generation by reverse electron transport at mitochondrial complex I. Decreasing ischaemic succinate accumulation by pharmacological inhibition is sufficient to ameliorate in vivo ischaemia-reperfusion injury in murine models of heart attack and stroke. Thus, we have identified a conserved metabolic response of tissues to ischaemia and reperfusion that unifies many hitherto unconnected aspects of ischaemia-reperfusion injury. Furthermore, these findings reveal a new pathway for metabolic control of ROS production in vivo, while demonstrating that inhibition of ischaemic succinate accumulation and its oxidation after subsequent reperfusion is a potential therapeutic target to decrease ischaemia-reperfusion injury in a range of pathologies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4255242/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4255242/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chouchani, Edward T -- Pell, Victoria R -- Gaude, Edoardo -- Aksentijevic, Dunja -- Sundier, Stephanie Y -- Robb, Ellen L -- Logan, Angela -- Nadtochiy, Sergiy M -- Ord, Emily N J -- Smith, Anthony C -- Eyassu, Filmon -- Shirley, Rachel -- Hu, Chou-Hui -- Dare, Anna J -- James, Andrew M -- Rogatti, Sebastian -- Hartley, Richard C -- Eaton, Simon -- Costa, Ana S H -- Brookes, Paul S -- Davidson, Sean M -- Duchen, Michael R -- Saeb-Parsy, Kourosh -- Shattock, Michael J -- Robinson, Alan J -- Work, Lorraine M -- Frezza, Christian -- Krieg, Thomas -- Murphy, Michael P -- G1100562/Medical Research Council/United Kingdom -- MC_U105663142/Medical Research Council/United Kingdom -- MC_U105674181/Medical Research Council/United Kingdom -- MC_UP_1101/3/Medical Research Council/United Kingdom -- MC_UU_12022/6/Medical Research Council/United Kingdom -- PG/07/126/24223/British Heart Foundation/United Kingdom -- PG/12/42/29655/British Heart Foundation/United Kingdom -- R01 HL071158/HL/NHLBI NIH HHS/ -- RG/12/4/29426/British Heart Foundation/United Kingdom -- British Heart Foundation/United Kingdom -- Canadian Institutes of Health Research/Canada -- Medical Research Council/United Kingdom -- England -- Nature. 2014 Nov 20;515(7527):431-5. doi: 10.1038/nature13909. Epub 2014 Nov 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] MRC Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, UK [2] Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK. ; Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK. ; MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK. ; King's College London, British Heart Foundation Centre of Research Excellence, The Rayne Institute, St Thomas' Hospital, London SE1 7EH, UK. ; Department of Cell and Developmental Biology and UCL Consortium for Mitochondrial Biology, University College London, Gower Street, London WC1E 6BT, UK. ; MRC Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, UK. ; Department of Anesthesiology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, New York 14642, USA. ; Institute of Cardiovascular &Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK. ; School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK. ; Unit of Paediatric Surgery, UCL Institute of Child Health, London WC1N 1EH, UK. ; Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK. ; University Department of Surgery and Cambridge NIHR Biomedical Research Centre, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25383517" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Monophosphate/metabolism ; Animals ; Aspartic Acid/metabolism ; Citric Acid Cycle ; Disease Models, Animal ; Electron Transport ; Electron Transport Complex I/metabolism ; Fumarates/metabolism ; Ischemia/enzymology/*metabolism ; Malates/metabolism ; Male ; Metabolomics ; Mice ; Mitochondria/enzymology/*metabolism ; Myocardial Infarction/enzymology/metabolism ; Myocardium/cytology/enzymology/metabolism ; Myocytes, Cardiac/enzymology/metabolism ; NAD/metabolism ; Reactive Oxygen Species/*metabolism ; Reperfusion Injury/enzymology/*metabolism ; Stroke/enzymology/metabolism ; Succinate Dehydrogenase/metabolism ; Succinic Acid/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-05-15
    Description: Macropinocytosis is a highly conserved endocytic process by which extracellular fluid and its contents are internalized into cells through large, heterogeneous vesicles known as macropinosomes. Oncogenic Ras proteins have been shown to stimulate macropinocytosis but the functional contribution of this uptake mechanism to the transformed phenotype remains unknown. Here we show that Ras-transformed cells use macropinocytosis to transport extracellular protein into the cell. The internalized protein undergoes proteolytic degradation, yielding amino acids including glutamine that can enter central carbon metabolism. Accordingly, the dependence of Ras-transformed cells on free extracellular glutamine for growth can be suppressed by the macropinocytic uptake of protein. Consistent with macropinocytosis representing an important route of nutrient uptake in tumours, its pharmacological inhibition compromises the growth of Ras-transformed pancreatic tumour xenografts. These results identify macropinocytosis as a mechanism by which cancer cells support their unique metabolic needs and point to the possible exploitation of this process in the design of anticancer therapies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810415/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810415/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Commisso, Cosimo -- Davidson, Shawn M -- Soydaner-Azeloglu, Rengin G -- Parker, Seth J -- Kamphorst, Jurre J -- Hackett, Sean -- Grabocka, Elda -- Nofal, Michel -- Drebin, Jeffrey A -- Thompson, Craig B -- Rabinowitz, Joshua D -- Metallo, Christian M -- Vander Heiden, Matthew G -- Bar-Sagi, Dafna -- 5 P30CA016087-32/CA/NCI NIH HHS/ -- P01 CA104838/CA/NCI NIH HHS/ -- P01 CA117969/CA/NCI NIH HHS/ -- P01-CA117969/CA/NCI NIH HHS/ -- P30 CA014051/CA/NCI NIH HHS/ -- P30-CA14051-39/CA/NCI NIH HHS/ -- R01 CA055360/CA/NCI NIH HHS/ -- R01 CA105463/CA/NCI NIH HHS/ -- R01 CA163591/CA/NCI NIH HHS/ -- R01CA055360/CA/NCI NIH HHS/ -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2013 May 30;497(7451):633-7. doi: 10.1038/nature12138. Epub 2013 May 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23665962" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/*metabolism ; Animals ; Biological Transport ; Carbon/metabolism ; Cell Line, Transformed ; Cell Line, Tumor ; Cell Proliferation ; *Cell Transformation, Neoplastic/genetics ; Disease Models, Animal ; Female ; Glutamine/metabolism ; Mice ; Mice, Nude ; NIH 3T3 Cells ; Oncogene Protein p21(ras)/genetics/*metabolism ; Pancreatic Neoplasms/genetics/*metabolism/*pathology ; *Pinocytosis ; Proteolysis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-02-28
    Description: DJ-1 protects against cell death following acute cardiac ischemia–reperfusion injury Cell Death and Disease 5, e1082 (February 2014). doi:10.1038/cddis.2014.41 Authors: R K Dongworth, U A Mukherjee, A R Hall, R Astin, S-B Ong, Z Yao, A Dyson, G Szabadkai, S M Davidson, D M Yellon & D J Hausenloy
    Keywords: DJ-1PARK7ischemia–reperfusioncardioprotectionmitochondria
    Electronic ISSN: 2041-4889
    Topics: Biology , Medicine
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1750-3841
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Data obtained for acetaldehyde analysis of yogurt and wine by direct 2,4-dinitrophenylhydrazine (DNPH) derivatization and extraction are compared to those obtained by distillation and DNPH derivatization. Separation and analysis of acetaldehyde 2,4dinitrophenylhydrazone (DNP) was by reverse phase high performance liquid chromatography (HPLC). Higher precision was obtained with the direct derivatization extraction technique than for the distillation derivatization technique. Data obtained by the direct derivatization extraction technique for acetaldehyde in commercial yogurt samples had less viriability than those for wine.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of food science 48 (1983), S. 0 
    ISSN: 1750-3841
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Plate count, titratable acidity, water soluble carbonyl (WSC) levels and hexane extractable carbonyl (HEC) levels were evaluated during incubation of Streptococcus lactis 60 at 32°C in reconstituted nonfat dry milk (NDM), peanut flour (PF)/NDM or soy protein isolate (SPI)/NDM blends and a in peanut or soybean milks. Increased heat treatment decreased acid production but did not affect growth of S. lactis in NDM, PF/NDM or SPI/NDM. Differing data trends for WSC synthesis were observed in PF/NDM and SPI/NDM when compared to NDM. The rate of growth, rate of acid production and the WSC level were lower in oilseed milks than in NDM. HEC levels in soybean milk decreased slightly with S. lactis incubation while HEC levels in other products were not significantly affected.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 227 (1970), S. 487-488 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] In the present work, the scanning electron microscope (SEM) electron channelling pattern method2'3 has been used, in conjunction with anodic stripping, to study the variation of crystalline perfection due to radiation damage with ion dose, depth below the surface and annealing treatment. Some ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 314 (1985), S. 398-398 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] SIR - The literature, both popular and specialist, often refers to population growth rates as exponential. More often than not this implies merely a rapid rate of increase and not necessarily its proper meaning of a fixed proportional increase in a set timespan. For example, reference to almost any ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 7 (1972), S. 473-474 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 7 (1972), S. 473-474 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-08-31
    Description: Sarcomas are cancers of the bone and soft tissue often defined by gene fusions. Ewing sarcoma involves fusions between EWSR1 , a gene encoding an RNA binding protein, and E26 transformation-specific (ETS) transcription factors. We explored how and when EWSR1-ETS fusions arise by studying the whole genomes of Ewing sarcomas. In 52 of 124 (42%) of tumors, the fusion gene arises by a sudden burst of complex, loop-like rearrangements, a process called chromoplexy, rather than by simple reciprocal translocations. These loops always contained the disease-defining fusion at the center, but they disrupted multiple additional genes. The loops occurred preferentially in early replicating and transcriptionally active genomic regions. Similar loops forming canonical fusions were found in three other sarcoma types. Chromoplexy-generated fusions appear to be associated with an aggressive form of Ewing sarcoma. These loops arise early, giving rise to both primary and relapse Ewing sarcoma tumors, which can continue to evolve in parallel.
    Keywords: Genetics, Medicine, Diseases, Online Only
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...