ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-02-22
    Description: Ageing is the predominant risk factor for cardiovascular diseases and contributes to a significantly worse outcome in patients with acute myocardial infarction. MicroRNAs (miRNAs) have emerged as crucial regulators of cardiovascular function and some miRNAs have key roles in ageing. We propose that altered expression of miRNAs in the heart during ageing contributes to the age-dependent decline in cardiac function. Here we show that miR-34a is induced in the ageing heart and that in vivo silencing or genetic deletion of miR-34a reduces age-associated cardiomyocyte cell death. Moreover, miR-34a inhibition reduces cell death and fibrosis following acute myocardial infarction and improves recovery of myocardial function. Mechanistically, we identified PNUTS (also known as PPP1R10) as a novel direct miR-34a target, which reduces telomere shortening, DNA damage responses and cardiomyocyte apoptosis, and improves functional recovery after acute myocardial infarction. Together, these results identify age-induced expression of miR-34a and inhibition of its target PNUTS as a key mechanism that regulates cardiac contractile function during ageing and after acute myocardial infarction, by inducing DNA damage responses and telomere attrition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boon, Reinier A -- Iekushi, Kazuma -- Lechner, Stefanie -- Seeger, Timon -- Fischer, Ariane -- Heydt, Susanne -- Kaluza, David -- Treguer, Karine -- Carmona, Guillaume -- Bonauer, Angelika -- Horrevoets, Anton J G -- Didier, Nathalie -- Girmatsion, Zenawit -- Biliczki, Peter -- Ehrlich, Joachim R -- Katus, Hugo A -- Muller, Oliver J -- Potente, Michael -- Zeiher, Andreas M -- Hermeking, Heiko -- Dimmeler, Stefanie -- England -- Nature. 2013 Mar 7;495(7439):107-10. doi: 10.1038/nature11919. Epub 2013 Feb 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23426265" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/genetics/pathology/*physiology ; Animals ; Apoptosis ; DNA Damage ; Fibrosis/genetics/pathology ; Gene Deletion ; *Gene Expression Regulation ; Gene Knockout Techniques ; Genetic Therapy ; Heart/*physiology ; Mice ; Mice, Inbred C57BL ; MicroRNAs/*genetics/metabolism ; Myocardial Infarction/genetics/pathology/therapy ; Myocardium/cytology/*metabolism/pathology ; Myocytes, Cardiac/cytology/metabolism/pathology ; Substrate Specificity ; Telomere/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-13
    Description: Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3182531/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3182531/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉International Multiple Sclerosis Genetics Consortium -- Wellcome Trust Case Control Consortium 2 -- Sawcer, Stephen -- Hellenthal, Garrett -- Pirinen, Matti -- Spencer, Chris C A -- Patsopoulos, Nikolaos A -- Moutsianas, Loukas -- Dilthey, Alexander -- Su, Zhan -- Freeman, Colin -- Hunt, Sarah E -- Edkins, Sarah -- Gray, Emma -- Booth, David R -- Potter, Simon C -- Goris, An -- Band, Gavin -- Oturai, Annette Bang -- Strange, Amy -- Saarela, Janna -- Bellenguez, Celine -- Fontaine, Bertrand -- Gillman, Matthew -- Hemmer, Bernhard -- Gwilliam, Rhian -- Zipp, Frauke -- Jayakumar, Alagurevathi -- Martin, Roland -- Leslie, Stephen -- Hawkins, Stanley -- Giannoulatou, Eleni -- D'alfonso, Sandra -- Blackburn, Hannah -- Martinelli Boneschi, Filippo -- Liddle, Jennifer -- Harbo, Hanne F -- Perez, Marc L -- Spurkland, Anne -- Waller, Matthew J -- Mycko, Marcin P -- Ricketts, Michelle -- Comabella, Manuel -- Hammond, Naomi -- Kockum, Ingrid -- McCann, Owen T -- Ban, Maria -- Whittaker, Pamela -- Kemppinen, Anu -- Weston, Paul -- Hawkins, Clive -- Widaa, Sara -- Zajicek, John -- Dronov, Serge -- Robertson, Neil -- Bumpstead, Suzannah J -- Barcellos, Lisa F -- Ravindrarajah, Rathi -- Abraham, Roby -- Alfredsson, Lars -- Ardlie, Kristin -- Aubin, Cristin -- Baker, Amie -- Baker, Katharine -- Baranzini, Sergio E -- Bergamaschi, Laura -- Bergamaschi, Roberto -- Bernstein, Allan -- Berthele, Achim -- Boggild, Mike -- Bradfield, Jonathan P -- Brassat, David -- Broadley, Simon A -- Buck, Dorothea -- Butzkueven, Helmut -- Capra, Ruggero -- Carroll, William M -- Cavalla, Paola -- Celius, Elisabeth G -- Cepok, Sabine -- Chiavacci, Rosetta -- Clerget-Darpoux, Francoise -- Clysters, Katleen -- Comi, Giancarlo -- Cossburn, Mark -- Cournu-Rebeix, Isabelle -- Cox, Mathew B -- Cozen, Wendy -- Cree, Bruce A C -- Cross, Anne H -- Cusi, Daniele -- Daly, Mark J -- Davis, Emma -- de Bakker, Paul I W -- Debouverie, Marc -- D'hooghe, Marie Beatrice -- Dixon, Katherine -- Dobosi, Rita -- Dubois, Benedicte -- Ellinghaus, David -- Elovaara, Irina -- Esposito, Federica -- Fontenille, Claire -- Foote, Simon -- Franke, Andre -- Galimberti, Daniela -- Ghezzi, Angelo -- Glessner, Joseph -- Gomez, Refujia -- Gout, Olivier -- Graham, Colin -- Grant, Struan F A -- Guerini, Franca Rosa -- Hakonarson, Hakon -- Hall, Per -- Hamsten, Anders -- Hartung, Hans-Peter -- Heard, Rob N -- Heath, Simon -- Hobart, Jeremy -- Hoshi, Muna -- Infante-Duarte, Carmen -- Ingram, Gillian -- Ingram, Wendy -- Islam, Talat -- Jagodic, Maja -- Kabesch, Michael -- Kermode, Allan G -- Kilpatrick, Trevor J -- Kim, Cecilia -- Klopp, Norman -- Koivisto, Keijo -- Larsson, Malin -- Lathrop, Mark -- Lechner-Scott, Jeannette S -- Leone, Maurizio A -- Leppa, Virpi -- Liljedahl, Ulrika -- Bomfim, Izaura Lima -- Lincoln, Robin R -- Link, Jenny -- Liu, Jianjun -- Lorentzen, Aslaug R -- Lupoli, Sara -- Macciardi, Fabio -- Mack, Thomas -- Marriott, Mark -- Martinelli, Vittorio -- Mason, Deborah -- McCauley, Jacob L -- Mentch, Frank -- Mero, Inger-Lise -- Mihalova, Tania -- Montalban, Xavier -- Mottershead, John -- Myhr, Kjell-Morten -- Naldi, Paola -- Ollier, William -- Page, Alison -- Palotie, Aarno -- Pelletier, Jean -- Piccio, Laura -- Pickersgill, Trevor -- Piehl, Fredrik -- Pobywajlo, Susan -- Quach, Hong L -- Ramsay, Patricia P -- Reunanen, Mauri -- Reynolds, Richard -- Rioux, John D -- Rodegher, Mariaemma -- Roesner, Sabine -- Rubio, Justin P -- Ruckert, Ina-Maria -- Salvetti, Marco -- Salvi, Erika -- Santaniello, Adam -- Schaefer, Catherine A -- Schreiber, Stefan -- Schulze, Christian -- Scott, Rodney J -- Sellebjerg, Finn -- Selmaj, Krzysztof W -- Sexton, David -- Shen, Ling -- Simms-Acuna, Brigid -- Skidmore, Sheila -- Sleiman, Patrick M A -- Smestad, Cathrine -- Sorensen, Per Soelberg -- Sondergaard, Helle Bach -- Stankovich, Jim -- Strange, Richard C -- Sulonen, Anna-Maija -- Sundqvist, Emilie -- Syvanen, Ann-Christine -- Taddeo, Francesca -- Taylor, Bruce -- Blackwell, Jenefer M -- Tienari, Pentti -- Bramon, Elvira -- Tourbah, Ayman -- Brown, Matthew A -- Tronczynska, Ewa -- Casas, Juan P -- Tubridy, Niall -- Corvin, Aiden -- Vickery, Jane -- Jankowski, Janusz -- Villoslada, Pablo -- Markus, Hugh S -- Wang, Kai -- Mathew, Christopher G -- Wason, James -- Palmer, Colin N A -- Wichmann, H-Erich -- Plomin, Robert -- Willoughby, Ernest -- Rautanen, Anna -- Winkelmann, Juliane -- Wittig, Michael -- Trembath, Richard C -- Yaouanq, Jacqueline -- Viswanathan, Ananth C -- Zhang, Haitao -- Wood, Nicholas W -- Zuvich, Rebecca -- Deloukas, Panos -- Langford, Cordelia -- Duncanson, Audrey -- Oksenberg, Jorge R -- Pericak-Vance, Margaret A -- Haines, Jonathan L -- Olsson, Tomas -- Hillert, Jan -- Ivinson, Adrian J -- De Jager, Philip L -- Peltonen, Leena -- Stewart, Graeme J -- Hafler, David A -- Hauser, Stephen L -- McVean, Gil -- Donnelly, Peter -- Compston, Alastair -- 068545/Z/02/Wellcome Trust/United Kingdom -- 075491/Z/04/Z/Wellcome Trust/United Kingdom -- 084702/Wellcome Trust/United Kingdom -- 085475/Wellcome Trust/United Kingdom -- 085475/B/08/Z/Wellcome Trust/United Kingdom -- 085475/Z/08/Z/Wellcome Trust/United Kingdom -- 090532/Wellcome Trust/United Kingdom -- 898/Multiple Sclerosis Society/United Kingdom -- AI076544/AI/NIAID NIH HHS/ -- CA104021/CA/NCI NIH HHS/ -- G0100594/Medical Research Council/United Kingdom -- G0400017/Medical Research Council/United Kingdom -- G0700061/Medical Research Council/United Kingdom -- G0901310/Medical Research Council/United Kingdom -- G0901461/Medical Research Council/United Kingdom -- G19/2/Medical Research Council/United Kingdom -- K23N/S048869/PHS HHS/ -- NS032830/NS/NINDS NIH HHS/ -- NS049477/NS/NINDS NIH HHS/ -- NS049510/NS/NINDS NIH HHS/ -- NS067305/NS/NINDS NIH HHS/ -- NS19142/NS/NINDS NIH HHS/ -- NS26799/NS/NINDS NIH HHS/ -- NS43559/NS/NINDS NIH HHS/ -- PDA/02/06/016/Department of Health/United Kingdom -- R01 NS026799/NS/NINDS NIH HHS/ -- R01 NS049477/NS/NINDS NIH HHS/ -- R01 NS049477-06A1/NS/NINDS NIH HHS/ -- RR020092/RR/NCRR NIH HHS/ -- RR024992/RR/NCRR NIH HHS/ -- UL1 TR000448/TR/NCATS NIH HHS/ -- Medical Research Council/United Kingdom -- England -- Nature. 2011 Aug 10;476(7359):214-9. doi: 10.1038/nature10251.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21833088" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Cell Differentiation/immunology ; Europe/ethnology ; Genetic Predisposition to Disease/*genetics ; Genome, Human/genetics ; Genome-Wide Association Study ; HLA-A Antigens/genetics ; HLA-DR Antigens/genetics ; HLA-DRB1 Chains ; Humans ; Immunity, Cellular/genetics/*immunology ; Major Histocompatibility Complex/genetics ; Multiple Sclerosis/*genetics/*immunology ; Polymorphism, Single Nucleotide/genetics ; Sample Size ; T-Lymphocytes, Helper-Inducer/cytology/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
  • 5
    Publication Date: 2013-04-06
    Description: Author(s): W. Lechner, S. J. M. Habraken, N. Kiesel, M. Aspelmeyer, and P. Zoller Levitated nanospheres in optical cavities open a novel route to study many-body systems out of solution and highly isolated from the environment. We show that properly tuned optical parameters allow for the study of the nonequilibrium dynamics of composite nanoparticles with nonisotropic optical fri... [Phys. Rev. Lett. 110, 143604] Published Fri Apr 05, 2013
    Keywords: Atomic, Molecular, and Optical Physics
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1999-09-01
    Print ISSN: 1386-1425
    Electronic ISSN: 1873-3557
    Topics: Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-01-23
    Description: Deciphering the evolutionary processes driving nucleotide variation in multiallelic genes is limited by the number of genetic systems in which such genes occur. The complementary sex determiner ( csd ) gene in the honey bee Apis mellifera is an informative example for studying allelic diversity and the underlying evolutionary forces in a well-described model of balancing selection. Acting as the primary signal of sex determination, diploid individuals heterozygous for csd develop into females, whereas csd homozygotes are diploid males that have zero fitness. Examining 77 of the functional heterozygous csd allele pairs, we established a combinatorical criteria that provide insights into the minimum number of amino acid differences among those pairs. Given a data set of 244 csd sequences, we show that the total number of csd alleles found in A. mellifera ranges from 53 (locally) to 87 (worldwide), which is much higher than was previously reported (20). Using a coupon-collector model, we extrapolate the presence of in total 116–145 csd alleles worldwide. The hypervariable region (HVR) is of particular importance in determining csd allele specificity, and we provide for this region evidence of high evolutionary rate for length differences exceeding those of microsatellites. The proportion of amino acids driven by positive selection and the rate of nonsynonymous substitutions in the HVR-flanking regions reach values close to 1 but differ with respect to the HVR length. Using a model of csd coalescence, we identified the high originating rate of csd specificities as a major evolutionary force, leading to an origin of a novel csd allele every 400,000 years. The csd polymorphism frequencies in natural populations indicate an excess of new mutations, whereas signs of ancestral transspecies polymorphism can still be detected. This study provides a comprehensive view of the enormous diversity and the evolutionary forces shaping a multiallelic gene.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-03-13
    Description: First-order phase transitions typically exhibit a significant hysteresis resulting for instance in boiling retardation and supercooling. The hysteresis arises, because nucleation of the new phase is activated. The free-energy change is positive until the nucleus reaches a critical size beyond which further growth is downhill. In practice, the barrier is often circumvented by the presence of heterogeneous nucleation centres, e.g. at vessel walls or seed crystals. Recently, it has been proposed that the homogeneous melting of ice proceeds via separation of defect pairs with a substantially smaller barrier as compared to the mere aggregation of defects. Here we report the observation of an analogous mechanism catalysing a two-dimensional homogeneous phase transition. A similar process is believed to occur in spin systems. This suggests that separation of defect pairs is a common trigger for phase transitions. Partially circumventing the activation barrier it reduces the hysteresis and may promote fluctuations within a temperature range increasing with decreasing dimensionality. Scientific Reports 4 doi: 10.1038/srep04110
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-09-14
    Description: Author(s): E. Quaranta, A. Bertarelli, R. Bruce, F. Carra, F. Cerutti, A. Lechner, S. Redaelli, E. Skordis, and P. Gradassi Modern hadron machines with high beam intensity may suffer from material damage in the case of large beam losses and even beam-intercepting devices, such as collimators, can be harmed. A systematic method to evaluate thresholds of damage owing to the impact of high energy particles is therefore cruc... [Phys. Rev. Accel. Beams 20, 091002] Published Wed Sep 13, 2017
    Keywords: High-Energy Accelerators and Colliders
    Electronic ISSN: 1098-4402
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-08-23
    Description: The sulfated polysaccharide dermatan sulfate (DS) forms proteoglycans with a number of distinct core proteins. Iduronic acid-containing domains in DS have a key role in mediating the functions of DS proteoglycans. Two tissue-specific DS epimerases, encoded by DSE and DSEL , and a GalNAc-4- O -sulfotransferase encoded by CHST14 are necessary for the formation of these domains. CHST14 mutations were previously identified for patients with the musculocontractural type of Ehlers–Danlos syndrome (MCEDS). We now identified a homozygous DSE missense mutation (c.803C〉T, p.S268L) by the positional candidate approach in a male child with MCEDS, who was born to consanguineous parents. Heterologous expression of mutant full-length and soluble recombinant DSE proteins showed a loss of activity towards partially desulfated DS. Patient-derived fibroblasts also showed a significant reduction in epimerase activity. The amount of DS disaccharides was markedly decreased in the conditioned medium and the cell fraction from cultured fibroblasts of the patient when compared with a healthy control subject, whereas no apparent difference was observed in the chondroitin sulfate (CS) chains from the conditioned media. However, the total amount of CS disaccharides in the cell fraction from the patient was increased ~1.5-fold, indicating an increased synthesis or a reduced conversion of CS chains in the cell fraction. Stable transfection of patient fibroblasts with a DSE expression vector increased the amount of secreted DS disaccharides. DSE deficiency represents a specific defect of DS biosynthesis. We demonstrate locus heterogeneity in MCEDS and provide evidence for the importance of DS in human development and extracellular matrix maintenance.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...