ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-05-27
    Description: Real-time high-rate geodetic data have been shown to be useful for rapid earthquake response systems during medium to large events. The 2014 M w 6.1 Napa, California earthquake is important because it provides an opportunity to study an event at the lower threshold of what can be detected with GPS. We show the results of GPS-only earthquake source products such as peak ground displacement (PGD) magnitude scaling, centroid moment tensor (CMT) solution and static slip inversion. We also highlight the retrospective real-time combination of GPS and strong motion data to produce seismogeodetic waveforms that have higher precision and longer period information than GPS-only or seismic-only measurements of ground motion. We show their utility for rapid kinematic slip inversion and conclude that it would have been possible, with current real-time infrastructure, to determine the basic features of the earthquake source. We supplement the analysis with strong motion data collected close to the source to obtain an improved post-event image of the source process. The model reveals unilateral fast propagation of slip to the north of the hypocenter with a delayed onset of shallow slip. The source model suggests that the multiple strands of observed surface rupture are controlled by the shallow soft sediments of Napa Valley and do not necessarily represent the intersection of the main faulting surface and the free surface. We conclude that the main dislocation plane is westward dipping and should intersect the surface to the east, either where the easternmost strand of surface rupture is observed or at the location where the West Napa fault has been mapped in the past.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-05-02
    Description: Journal of the American Chemical Society DOI: 10.1021/ja302469a
    Print ISSN: 0002-7863
    Electronic ISSN: 1520-5126
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-01-21
    Description: Global warming has focused attention on the polar regions and recent changes in sea and land ice distribution. Accurate modeling of the future evolution of climate and weather in the Antarctic relies heavily on remote sensing observations. However, their reliable assimilation into numerical weather models and reanalyses is challenging because of the unique environment and sparsity of in-situ observations for validation. We developed a stratospheric balloon-borne GPS radio occultation system for the 2010 Concordiasi campaign to provide refractivity and derived temperature profiles for improving satellite data assimilation. The observed excess phase delay profiles agree with those simulated from model and dropsonde profiles. 711 occultations were recorded from two balloons, comparable to the number of profiles acquired by 13 driftsonde balloons. Of these profiles, 32% descended to 4 km above the surface, without open-loop receiver tracking technology, demonstrating it is possible to retrieve useful information with relatively simple low cost instruments.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-11-30
    Description: [1]  The combination of GPS and strong-motion data to estimate seismogeodetic waveforms creates a data set that is sensitive to the entire spectrum of ground displacement and the full extent of coseismic slip. In this study we derive earthquake magnitude scaling relationships using seismogeodetic observations of either P wave amplitude or peak ground displacements from five earthquakes in Japan and California ranging in magnitude from 5.3 to 9.0. The addition of the low frequency component allows rapid distinction of earthquake size for large magnitude events with high precision, unlike accelerometer data that saturate for earthquakes greater than M 7 to 8, and is available well before the coseismic displacements are emplaced. These results, though based on a limited seismogeodetic data set, support earlier studies that propose it may be possible to estimate the final magnitude of an earthquake well before the rupture is complete.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-06-07
    Description: Fluorescence light microscopy allows multicolor visualization of cellular components with high specificity, but its utility has until recently been constrained by the intrinsic limit of spatial resolution. We applied three-dimensional structured illumination microscopy (3D-SIM) to circumvent this limit and to study the mammalian nucleus. By simultaneously imaging chromatin, nuclear lamina, and the nuclear pore complex (NPC), we observed several features that escape detection by conventional microscopy. We could resolve single NPCs that colocalized with channels in the lamin network and peripheral heterochromatin. We could differentially localize distinct NPC components and detect double-layered invaginations of the nuclear envelope in prophase as previously seen only by electron microscopy. Multicolor 3D-SIM opens new and facile possibilities to analyze subcellular structures beyond the diffraction limit of the emitted light.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2916659/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2916659/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schermelleh, Lothar -- Carlton, Peter M -- Haase, Sebastian -- Shao, Lin -- Winoto, Lukman -- Kner, Peter -- Burke, Brian -- Cardoso, M Cristina -- Agard, David A -- Gustafsson, Mats G L -- Leonhardt, Heinrich -- Sedat, John W -- GM-2501-25/GM/NIGMS NIH HHS/ -- R01 GM025101/GM/NIGMS NIH HHS/ -- R01 GM025101-25/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2008 Jun 6;320(5881):1332-6. doi: 10.1126/science.1156947.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Integrated Protein Science, Department of Biology, Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18535242" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Nucleus/*ultrastructure ; Chromatin/*ultrastructure ; Fluorescent Dyes ; Heterochromatin/ultrastructure ; Imaging, Three-Dimensional/instrumentation/*methods ; Indoles ; Interphase ; Lamins/ultrastructure ; Mice ; Microscopy, Confocal ; Microscopy, Fluorescence/instrumentation/*methods ; Myoblasts ; Nuclear Envelope/*ultrastructure ; Nuclear Lamina/ultrastructure ; Nuclear Pore/ultrastructure ; Optics and Photonics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-05-29
    Description: [1]  Rapid characterization of finite fault geometry and slip for large earthquakes is important for mitigation of seismic and tsunamigenic hazards. Saturation of near-source weak motion and problematic integration of strong-motion data into displacements make this difficult in real time. Combining GPS and accelerometer data to estimate seismogeodetic displacement waveforms overcomes these limitations by providing mm-level three-dimensional accuracy and improved estimation of coseismic deformation compared to GPS-only methods. We leverage collocated GPS and accelerometer data from the 2011 Mw 9.0 Tohoku-oki, Japan earthquake by replaying them in simulated real-time mode. Using a novel approach to account for fault finiteness we generate an accurate centroid moment tensor solution independently of any constraint on the slab geometry followed by a finite fault slip model. The replay of GPS and seismic data demonstrates that robust models could have been made available within three minutes of earthquake initiation.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-09-06
    Description: Airborne radio occultation (ARO) is a remote sensing technique for atmospheric sounding using Global Positioning System (GPS) signals received by an airborne instrument. The atmospheric refractivity profile, which depends on pressure, temperature, and water vapor, can be retrieved by measuring the signal delay due to the refractive medium through which the signal traverses. The ARO system was developed to make repeated observations within an individual meteorological event such as a tropical storm, regardless of the presence of clouds and precipitation, and complements existing observation techniques such as dropsondes and satellite remote sensing. RO systems can suffer multipath ray propagation in the lower troposphere if there are strong refractivity gradients, for example, due to a highly variable moisture distribution or a sharp boundary layer, interfering with continuous carrier phase tracking as well as complicating retrievals. The phase matching method has now been adapted for ARO and is shown to reduce negative biases in the refractivity retrieval by providing robust retrievals of bending angle in the presence of multipath. The retrieval results are presented for a flight campaign in September 2010 for Hurricane Karl in the Caribbean Sea. The accuracy is assessed through comparison with the European Center for Medium Range Weather Forecasting (ECMWF) Interim Reanalysis (ERA-I). The fractional difference in refractivity can be maintained at a standard deviation of 2% from flight level down to a height of 2 km. The PM method decreases the negative refractivity bias by as much as 4% over the classical geometrical optics retrieval method.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1980-07-11
    Description: A kinetic mathematical model of crystal growth from the melt is used to describe quantitatively the phenomenon of oscillatory zoning in plagioclase feldspar. In this model, the functional dependence of crystal growth rate on both melt and crystal surface composition and the transport of material within the melt are explicitly considered. Oscillatory zoning is found to develop for a wide variety of such functional dependence and to be sensitive to the initial composition of the melt.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haase, C S -- Chadam, J -- Feinn, D -- Ortoleva, P -- New York, N.Y. -- Science. 1980 Jul 11;209(4453):272-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17807115" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-03-06
    Description: Jules Verne’s adventure novels Five Weeks in a Balloon and Around the World in 80 Days highlighted some of the great technological advances of the late 19th century that revolutionized travel and captured the imagination of the public [ Verne, 1863, 1873]. Among those inspired by the novels was Nellie Bly, an American journalist for the New York World , who set off in November 1889 to complete a journey by rail and steamship, following Verne’s imagined path around the world in a record 72 days [ Bly, 1890] (Figure 1). Fig. 1. In 1889–1890, real-life New York World reporter Nellie Bly completed Jules Verne’s imagined path (shown here) around the world in slightly less than Verne’s “80 days.” Neither Bly’s journey nor Verne’s Around the World in 80 Days actually involved balloon travel, but Verne’s book drew on his previous novel Five Weeks in a Balloon. The earlier novel inspired the idea of incorporating balloon travel for one leg of the trip in the 1956 movie Around the World in 80 Days that has become a beloved misconception about Verne’s later book. Credit: Roke/Wikimedia Commons CC BY-SA 3.0 Bly’s accounts demonstrated how new technology, such as the transcountry railroads in the United States and India and the Suez Canal, brought exotic destinations within reach. The revolutionary development of submarine cables and the electric telegraph allowed Bly to keep her editors, and the larger connected world, aware of her progress in near-real time. The France-U.S. collaborative Stratéole 2 project is planning its own series of balloon trips, which will circle the world near the equator for 80 days (more or less), as did these fictional and factual 19th century adventurers, demonstrating new technology and sending new observations from the voyage back via satellite. Drifting with the Winds Scientists with the Stratéole 2 project will release superpressure balloons, designed to drift in the lower stratosphere, from the Seychelles islands in the Indian Ocean (Figure 2). Superpressure balloons contain a fixed amount of helium sealed inside an envelope that does not stretch. This type of balloon is not fully inflated when it is launched, but it expands to its full volume as it rises to an altitude where the gas density inside the balloon matches the density of the surrounding air and where it drifts with the wind. Fig. 2. Early test flights of the French National Center for Space Studies superpressure balloon system during February–May 2010 followed a tropical route. The flight durations of the three balloons were 92, 78, and (yes!) 80 days. The traces of the balloon paths show some wave structure, and the balloon paths reversed direction when the quasi-biennial oscillation, a periodic east–west oscillating feature in tropical lower stratospheric winds, changed phase. Credit: A. Hertzog Each balloon will carry as many as four instruments. As they collect their high-accuracy measurements of meteorological variables, chemical tracers, clouds, and aerosols, their horizontal motions are nearly identical to those of the surrounding air mass. These measurements will advance our knowledge and understanding of cirrus clouds, aerosols, and equatorial waves in the tropical tropopause layer (TTL; the transition region between the troposphere and the stratosphere) and in the lower stratosphere. Shown here is a fully inflated superpressure balloon in the lab at the French National Center for Space Studies (CNES). Credit: Philippe Cocquerez, CNES The Stratéole 2 research program will begin with a five-balloon technology validation campaign in Northern Hemisphere (boreal) fall–winter 2018–2019, followed by 20 balloon flights in boreal fall–winter 2020–2021. In the second campaign, 10 balloons will fly at an altitude near 20 kilometers, just above the TTL, and another 10 will fly near 18 kilometers, within the TTL. From past experience, we expect each balloon to fly for more than 2 months. Typically, a balloon will fly for about 84 days before chaotic atmospheric motions or interactions with Rossby waves push it outside of the deep tropics. A final 20-balloon campaign in 2023–2024 will drift in the opposite direction because of the shifting phase of the quasi-biennial oscillation (QBO), a dominant, periodic east–west oscillating feature in tropical lower stratospheric winds. Challenges Aloft The Stratéole 2 campaign targets the TTL, the primary entry point for tropospheric air into the stratosphere. As air slowly ascends across the TTL, the coldest temperatures encountered at the cold point tropopause (CPT) freeze water vapor into ice crystals. The formation of ice crystals dehydrates the air and regulates the amount of humidity reaching the global stratosphere, giving the TTL an outsized importance considering its geographic extent. The ice crystals form thin cirrus clouds, which have a global impact on the balance between incoming solar radiation and radiation reflected back into space at tropical latitudes. Water vapor and cirrus feedbacks are extremely important in climate system models. The underlying processes that control the formation and sublimation (direct conversion of ice crystals to water vapor) of these clouds remain strongly debated. These processes involve the interplay of deep convection, microphysics, aerosols, wave-induced temperature variations with timescales ranging from minutes to weeks, and the balance of forces driving large-scale slow ascent of air in the tropics. The superposition of wave-induced fluctuations on the average upwelling motion forces the temperatures in the TTL to extreme values at the CPT—less than –94°C at times and well below those expected from radiative equilibrium. These same waves also drive the QBO, which has an important long-range indirect influence on high-latitude seasonal forecasts. The waves, generated by convection below, transport momentum vertically across the TTL and drive QBO wind variations as the momentum dissipates in the stratosphere. Satellite and in situ observations can track the wind reversals of the QBO, but most general circulation models cannot replicate the QBO using current methods. This shortcoming is due to a combination of inadequate spatial resolution and a lack of small-scale wave drag applied at the subgrid scale. Even when models do simulate the QBO, doubts remain on the contribution from various families of waves with different scales and frequencies. As a result, even models that internally generate a QBO were unable to forecast the anomalous disruption of the oscillation that occurred in February 2016 [ Osprey et al., 2016]. Science Objectives This superpressure balloon, shown here at launch, is not fully inflated. As it rises, the volume of helium sealed inside increases until the spherical balloon is fully inflated, giving the balloon a fixed density. Once the balloon has reached the atmospheric level where the air has the same density, it drifts with the wind, providing accurate wind measurements. Credit: Philippe Cocquerez, CNES The overarching objectives of Stratéole 2 are to explore processes that control the transfer of trace gases and momentum between the equatorial upper troposphere and lower stratosphere. The instruments will provide fine-scale measurements of water vapor, temperature, and aerosol/ice at the balloon gondola and also within several kilometers below flight level, documenting air composition and investigating the formation of cirrus in the upper TTL. The balloons also provide unique measurements of equatorial waves over the full spectrum from high-frequency buoyancy waves to planetary-scale equatorial waves, providing information needed to improve representation of these waves in climate models. Stratéole 2 balloons will sample the whole equatorial band from 20°S to 15°N, thus complementing the widespread (but limited-resolution) spaceborne observations and the high-resolution (but geographically restricted) airborne and ground-based measurements from previous field missions. Past balloon campaign measurements sampling the Antarctic stratospheric vortex [see Podglajen et al., 2016] have been used to make accurate estimates of wave momentum fluxes as well as to explain springtime stratospheric ozone loss rates; we expect similar successes with our current campaigns. Stratéole 2 balloon flights will collect measurements over oceanic areas that are otherwise devoid of any stratospheric wind measurements.Other Stratéole 2 science objectives include contributions to operational meteorology and satellite validation. Wind analyses and forecasts have notably large errors in the tropics because sparse tropical wind measurements cannot be modeled in a straightforward way through their dynamical relation to temperature, as they are at higher latitudes. Thus, reducing these errors requires a higher density of measurements. Stratéole 2 balloon flights will address this data shortage by providing unprecedented, accurate wind observations in the equatorial regions of the upper troposphere and lower stratosphere. In particular, the project will collect measurements over oceanic areas that are otherwise devoid of any stratospheric wind measurements. The data will also contribute to the validation of Atmospheric Dynamics Mission Aeolus (ADM-Aeolus) wind products. An innovative European Space Agency mission, ADM-Aeolus, due to be launched in September 2018, is designed to perform the first spaceborne wind lidar measurements, providing unprecedented global coverage. The ensemble of Stratéole 2 instrumentation includes in situ measurements of pressure, temperature, and winds every 30 seconds and less frequently sampled observations of ozone, aerosols, water vapor, and carbon dioxide, plus remotely sensed cloud structure from microlidar and directional radiative fluxes. Instruments providing profiles will include GPS radio occultation receivers that measure temperature profiles to the side of the balloons. Novel reel-down devices suspended as far as 2 kilometers directly below the balloons will also provide profiles to explore the fine-scale distribution of temperature, aerosol/ice, and humidity. Capturing temperature variations in high-resolution profiles, in particular, from the unique balloon platform, is an approach that will provide new insight into equatorial wave processes. Measuring ozone in combination with water vapor and carbon dioxide enables us to discover correlations among these tracers that describe transport processes at the top of the TTL, including convective overshoots that rapidly transport air from the surface into the TTL. Data Dissemination Within 12 months of the end of each balloon campaign, the Stratéole 2 data set will be freely available to the scientific community.The Stratéole 2 data policy is in compliance with World Meteorological Organization (WMO) Resolution 40 (WMO Cg-XII) on the policy and practice for the exchange of meteorological and related data and products. Within 12 months of the end of each balloon campaign, the Stratéole 2 data set will be freely available to the scientific community through the Stratéole 2 Data Archive Center (S2DAC), which is scheduled to launch its website in July 2018. S2DAC will collect and make available the balloon observations and associated ground-based and satellite data, reanalyses, and model outputs. The S2DAC includes a primary, full repository at the Dynamic Meteorology Laboratory (LMD) in France and a secondary mirror site at the Laboratory for Atmospheric and Space Physics (LASP) in Boulder, Colo., in the United States. In addition, during the balloon campaigns, a subset of the Stratéole 2 data set, specifically flight-level winds, will be disseminated on the Global Telecommunication System for their assimilation in numerical weather prediction systems. We invite and encourage the use of Stratéole 2 data by the broader scientific community, and potential users can watch for future campaign updates on the project website. Up, Up, and Away In the spirit of Verne’s imagined use of new technologies and Bly’s real-world application of those technologies to explore the world, the Stratéole 2 campaign will scientifically explore the tropical tropopause and lower stratosphere from a long-duration superpressure balloon platform. The use of multiple balloons will permit extensive exploration of the finely layered features and unique processes occurring in this remote part of the atmosphere. With the involvement of the broader scientific community, analyses of the Stratéole 2 measurements hold promise to provide a new and deeper understanding of these processes and the connections of this region to global chemistry, dynamics, and climate variability. Acknowledgments Major funding for the Stratéole 2 campaign is provided by France’s National Center for Space Studies (CNES) and National Center for Scientific Research (CNRS), as well as the U.S. National Science Foundation (NSF).
    Print ISSN: 0096-3941
    Electronic ISSN: 2324-9250
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-08-16
    Description: Gravity waves (GWs) play an important role in transferring energy and momentum from the troposphere to the middle atmosphere. However, shorter scale GWs are generally not explicitly resolved in general circulation models but need to be parameterized instead. Super pressure balloons provide direct access to measure GW characteristics as a function of wave intrinsic frequency that are needed for these parameterizations. The 30 s sampling rate of the GPS receivers carried on the balloons deployed in the 2010 Concordiasi campaign in the Antarctic is much higher compared to the previous campaigns and can cover the full range of the GW spectrum. Two among 19 balloons are also equipped with the dual-frequency GPS receivers initially developed for GPS radio occultation research in addition to the single-frequency receivers, which are expected to provide better positions for GW parameter estimations. Improvements of the positions are significant, from ~3-10 m horizontal and ~5 m vertical to ~0.1 and 0.2 m, respectively, which makes it possible to resolve the Eulerian pressure independently of altitude for the intrinsic phase speed estimation. The lower position accuracy in the previous analysis of campaign results from the single-frequency GPS receiver was primarily due to a problem with the on-board clock that is not present in the new results. The impacts of the position improvements on the final GW parameters are highlighted, with larger difference in momentum flux for the shorter scale GWs than for the longer scale GWs, and significant difference in the distribution of the intrinsic phase speed.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...