ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-11-14
    Description: Sensory experiences exert a powerful influence on the function and future performance of neuronal circuits in the mammalian neocortex. Restructuring of synaptic connections is believed to be one mechanism by which cortical circuits store information about the sensory world. Excitatory synaptic structures, such as dendritic spines, are dynamic entities that remain sensitive to alteration of sensory input throughout life. It remains unclear, however, whether structural changes at the level of dendritic spines can outlast the original experience and thereby provide a morphological basis for long-term information storage. Here we follow spine dynamics on apical dendrites of pyramidal neurons in functionally defined regions of adult mouse visual cortex during plasticity of eye-specific responses induced by repeated closure of one eye (monocular deprivation). The first monocular deprivation episode doubled the rate of spine formation, thereby increasing spine density. This effect was specific to layer-5 cells located in binocular cortex, where most neurons increase their responsiveness to the non-deprived eye. Restoring binocular vision returned spine dynamics to baseline levels, but absolute spine density remained elevated and many monocular deprivation-induced spines persisted during this period of functional recovery. However, spine addition did not increase again when the same eye was closed for a second time. This absence of structural plasticity stands out against the robust changes of eye-specific responses that occur even faster after repeated deprivation. Thus, spines added during the first monocular deprivation experience may provide a structural basis for subsequent functional shifts. These results provide a strong link between functional plasticity and specific synaptic rearrangements, revealing a mechanism of how prior experiences could be stored in cortical circuits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hofer, Sonja B -- Mrsic-Flogel, Thomas D -- Bonhoeffer, Tobias -- Hubener, Mark -- Wellcome Trust/United Kingdom -- England -- Nature. 2009 Jan 15;457(7227):313-7. doi: 10.1038/nature07487. Epub 2008 Nov 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Neurobiology, D-82152 Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19005470" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Dendrites/*physiology ; Mice ; Mice, Inbred C57BL ; Models, Neurological ; Neural Pathways/*physiology ; Neuronal Plasticity/physiology ; Pyramidal Cells/*cytology ; Vision, Binocular/physiology ; Vision, Monocular/physiology ; Visual Cortex/*cytology/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-04-12
    Description: Neuronal connectivity is fundamental to information processing in the brain. Therefore, understanding the mechanisms of sensory processing requires uncovering how connection patterns between neurons relate to their function. On a coarse scale, long-range projections can preferentially link cortical regions with similar responses to sensory stimuli. But on the local scale, where dendrites and axons overlap substantially, the functional specificity of connections remains unknown. Here we determine synaptic connectivity between nearby layer 2/3 pyramidal neurons in vitro, the response properties of which were first characterized in mouse visual cortex in vivo. We found that connection probability was related to the similarity of visually driven neuronal activity. Neurons with the same preference for oriented stimuli connected at twice the rate of neurons with orthogonal orientation preferences. Neurons responding similarly to naturalistic stimuli formed connections at much higher rates than those with uncorrelated responses. Bidirectional synaptic connections were found more frequently between neuronal pairs with strongly correlated visual responses. Our results reveal the degree of functional specificity of local synaptic connections in the visual cortex, and point to the existence of fine-scale subnetworks dedicated to processing related sensory information.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3089591/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3089591/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ko, Ho -- Hofer, Sonja B -- Pichler, Bruno -- Buchanan, Katherine A -- Sjostrom, P Jesper -- Mrsic-Flogel, Thomas D -- FP7 243914/Medical Research Council/United Kingdom -- G0700188/Medical Research Council/United Kingdom -- G0700188(81448)/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2011 May 5;473(7345):87-91. doi: 10.1038/nature09880. Epub 2011 Apr 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Physiology and Pharmacology, University College London, 21 University Street, London WC1E 6DE, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21478872" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/chemistry ; Calcium Signaling/physiology ; Computer Simulation ; Electrical Synapses/*physiology ; Mice ; Mice, Inbred C57BL ; Nerve Net/*physiology ; Patch-Clamp Techniques ; Photic Stimulation ; Pyramidal Cells/physiology ; Visual Cortex/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-04-05
    Description: Sensory processing occurs in neocortical microcircuits in which synaptic connectivity is highly structured and excitatory neurons form subnetworks that process related sensory information. However, the developmental mechanisms underlying the formation of functionally organized connectivity in cortical microcircuits remain unknown. Here we directly relate patterns of excitatory synaptic connectivity to visual response properties of neighbouring layer 2/3 pyramidal neurons in mouse visual cortex at different postnatal ages, using two-photon calcium imaging in vivo and multiple whole-cell recordings in vitro. Although neural responses were already highly selective for visual stimuli at eye opening, neurons responding to similar visual features were not yet preferentially connected, indicating that the emergence of feature selectivity does not depend on the precise arrangement of local synaptic connections. After eye opening, local connectivity reorganized extensively: more connections formed selectively between neurons with similar visual responses and connections were eliminated between visually unresponsive neurons, but the overall connectivity rate did not change. We propose a sequential model of cortical microcircuit development based on activity-dependent mechanisms of plasticity whereby neurons first acquire feature preference by selecting feedforward inputs before the onset of sensory experience--a process that may be facilitated by early electrical coupling between neuronal subsets--and then patterned input drives the formation of functional subnetworks through a redistribution of recurrent synaptic connections.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ko, Ho -- Cossell, Lee -- Baragli, Chiara -- Antolik, Jan -- Clopath, Claudia -- Hofer, Sonja B -- Mrsic-Flogel, Thomas D -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2013 Apr 4;496(7443):96-100. doi: 10.1038/nature12015.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Physiology and Pharmacology, University College London, 21 University Street, London WC1E 6DE, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23552948" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Newborn ; Eye ; Eyelids/physiology ; Mice ; Mice, Inbred C57BL ; *Models, Neurological ; Movement ; Neural Pathways/*physiology ; Neuronal Plasticity/physiology ; Pyramidal Cells/cytology/physiology ; Synapses/metabolism/physiology ; Visual Cortex/cytology/*physiology ; Visual Perception/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-04-08
    Description: A large population of neurons can, in principle, produce an astronomical number of distinct firing patterns. In cortex, however, these patterns lie in a space of lower dimension, as if individual neurons were "obedient members of a huge orchestra". Here we use recordings from the visual cortex of mouse (Mus musculus) and monkey (Macaca mulatta) to investigate the relationship between individual neurons and the population, and to establish the underlying circuit mechanisms. We show that neighbouring neurons can differ in their coupling to the overall firing of the population, ranging from strongly coupled 'choristers' to weakly coupled 'soloists'. Population coupling is largely independent of sensory preferences, and it is a fixed cellular attribute, invariant to stimulus conditions. Neurons with high population coupling are more strongly affected by non-sensory behavioural variables such as motor intention. Population coupling reflects a causal relationship, predicting the response of a neuron to optogenetically driven increases in local activity. Moreover, population coupling indicates synaptic connectivity; the population coupling of a neuron, measured in vivo, predicted subsequent in vitro estimates of the number of synapses received from its neighbours. Finally, population coupling provides a compact summary of population activity; knowledge of the population couplings of n neurons predicts a substantial portion of their n(2) pairwise correlations. Population coupling therefore represents a novel, simple measure that characterizes the relationship of each neuron to a larger population, explaining seemingly complex network firing patterns in terms of basic circuit variables.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4449271/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4449271/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Okun, Michael -- Steinmetz, Nicholas A -- Cossell, Lee -- Iacaruso, M Florencia -- Ko, Ho -- Bartho, Peter -- Moore, Tirin -- Hofer, Sonja B -- Mrsic-Flogel, Thomas D -- Carandini, Matteo -- Harris, Kenneth D -- 095668/Wellcome Trust/United Kingdom -- 095669/Wellcome Trust/United Kingdom -- 095853/Wellcome Trust/United Kingdom -- EY014924/EY/NEI NIH HHS/ -- R01 EY014924/EY/NEI NIH HHS/ -- T32 MH020016/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2015 May 28;521(7553):511-5. doi: 10.1038/nature14273. Epub 2015 Apr 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] UCL Institute of Neurology, University College London, London WC1N 3BG, UK [2] Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6DE, UK [3] UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK. ; 1] UCL Institute of Neurology, University College London, London WC1N 3BG, UK [2] Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6DE, UK [3] UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK [4] Howard Hughes Medical Institute and Department of Neurobiology, Stanford University, Stanford, California 94305-5125, USA. ; 1] Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6DE, UK [2] Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland. ; Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6DE, UK. ; Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Avenue, Newark, New Jersey 07102, USA. ; Howard Hughes Medical Institute and Department of Neurobiology, Stanford University, Stanford, California 94305-5125, USA. ; UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK. ; 1] UCL Institute of Neurology, University College London, London WC1N 3BG, UK [2] Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6DE, UK [3] Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Avenue, Newark, New Jersey 07102, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25849776" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; Macaca mulatta ; Male ; Mice ; Models, Neurological ; Neurons/*cytology/*physiology ; Optogenetics ; Synapses/physiology ; Visual Cortex/*cytology/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-02-06
    Description: The strength of synaptic connections fundamentally determines how neurons influence each other's firing. Excitatory connection amplitudes between pairs of cortical neurons vary over two orders of magnitude, comprising only very few strong connections among many weaker ones. Although this highly skewed distribution of connection strengths is observed in diverse cortical areas, its functional significance remains unknown: it is not clear how connection strength relates to neuronal response properties, nor how strong and weak inputs contribute to information processing in local microcircuits. Here we reveal that the strength of connections between layer 2/3 (L2/3) pyramidal neurons in mouse primary visual cortex (V1) obeys a simple rule--the few strong connections occur between neurons with most correlated responses, while only weak connections link neurons with uncorrelated responses. Moreover, we show that strong and reciprocal connections occur between cells with similar spatial receptive field structure. Although weak connections far outnumber strong connections, each neuron receives the majority of its local excitation from a small number of strong inputs provided by the few neurons with similar responses to visual features. By dominating recurrent excitation, these infrequent yet powerful inputs disproportionately contribute to feature preference and selectivity. Therefore, our results show that the apparently complex organization of excitatory connection strength reflects the similarity of neuronal responses, and suggest that rare, strong connections mediate stimulus-specific response amplification in cortical microcircuits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cossell, Lee -- Iacaruso, Maria Florencia -- Muir, Dylan R -- Houlton, Rachael -- Sader, Elie N -- Ko, Ho -- Hofer, Sonja B -- Mrsic-Flogel, Thomas D -- 095074/Wellcome Trust/United Kingdom -- England -- Nature. 2015 Feb 19;518(7539):399-403. doi: 10.1038/nature14182. Epub 2015 Feb 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Neuroscience, Physiology and Pharmacology, University College London, 21 University Street, London WC1E 6DE, UK [2] Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH - 4056 Basel, Switzerland. ; Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH - 4056 Basel, Switzerland. ; Department of Neuroscience, Physiology and Pharmacology, University College London, 21 University Street, London WC1E 6DE, UK. ; 1] Department of Neuroscience, Physiology and Pharmacology, University College London, 21 University Street, London WC1E 6DE, UK [2] Lui Che Woo Institute of Innovative Medicine and Chow Yuk Ho Technology Center for Innovative Medicine, Faculty of Medicine, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25652823" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Excitatory Postsynaptic Potentials/*physiology ; Female ; Male ; Mice ; Mice, Inbred C57BL ; Models, Neurological ; Neural Pathways ; Photic Stimulation ; Pyramidal Cells/cytology/physiology ; Synapses/*physiology ; Visual Cortex/*cytology/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...