ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-02-14
    Description: Infection by human rhinovirus (HRV) is a major cause of upper and lower respiratory tract disease worldwide and displays considerable phenotypic variation. We examined diversity by completing the genome sequences for all known serotypes (n = 99). Superimposition of capsid crystal structure and optimal-energy RNA configurations established alignments and phylogeny. These revealed conserved motifs; clade-specific diversity, including a potential newly identified species (HRV-D); mutations in field isolates; and recombination. In analogy with poliovirus, a hypervariable 5' untranslated region tract may affect virulence. A configuration consistent with nonscanning internal ribosome entry was found in all HRVs and may account for rapid translation. The data density from complete sequences of the reference HRVs provided high resolution for this degree of modeling and serves as a platform for full genome-based epidemiologic studies and antiviral or vaccine development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3923423/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3923423/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Palmenberg, Ann C -- Spiro, David -- Kuzmickas, Ryan -- Wang, Shiliang -- Djikeng, Appolinaire -- Rathe, Jennifer A -- Fraser-Liggett, Claire M -- Liggett, Stephen B -- R01 HL091490/HL/NHLBI NIH HHS/ -- U19 AI070503/AI/NIAID NIH HHS/ -- U19-AI070503/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2009 Apr 3;324(5923):55-9. doi: 10.1126/science.1165557. Epub 2009 Feb 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Molecular Virology, University of Wisconsin, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19213880" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; 5' Untranslated Regions ; Base Composition ; Base Sequence ; Codon, Terminator ; *Evolution, Molecular ; *Genome, Viral ; Humans ; Molecular Sequence Data ; Mutation ; Nucleic Acid Conformation ; Open Reading Frames ; Phylogeny ; Picornaviridae Infections/virology ; Polyproteins/biosynthesis/chemistry/genetics ; RNA, Viral/chemistry/*genetics ; Recombination, Genetic ; Respiratory Tract Infections/virology ; Rhinovirus/classification/*genetics/ultrastructure ; Sequence Alignment ; Sequence Analysis, RNA ; Serotyping ; Viral Proteins/biosynthesis/chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-14
    Description: Species of the Drosophila melanogaster species subgroup, including the species D. simulans , D. mauritiana , D. yakuba , and D. santomea , have long served as model systems for studying evolution. However, studies in these species have been limited by a paucity of genetic and transgenic reagents. Here, we describe a collection of transgenic and genetic strains generated to facilitate genetic studies within and between these species. We have generated many strains of each species containing mapped piggyBac transposons including an enhanced yellow fluorescent protein ( EYFP ) gene expressed in the eyes and a C31 attP site-specific integration site. We have tested a subset of these lines for integration efficiency and reporter gene expression levels. We have also generated a smaller collection of other lines expressing other genetically encoded fluorescent molecules in the eyes and a number of other transgenic reagents that will be useful for functional studies in these species. In addition, we have mapped the insertion locations of 58 transposable elements in D. virilis that will be useful for genetic mapping studies.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...