ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Geophys. Res. Lett., Luxembourg, Inst. Electrical & Electronics Engineers, vol. 25, no. 18, pp. 3413-3416, pp. B06303, (ISSN: 1340-4202)
    Publication Date: 1998
    Keywords: Crustal deformation (cf. Earthquake precursor: deformation or strain) ; Volcanology ; Geodesy ; GRL
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  J. Volcanology Geothermal Res., Hannover, Akad. Nauk SSSR, vol. 152, no. 1-2, pp. 157-173, pp. B06304, (ISSN: 1340-4202)
    Publication Date: 2006
    Keywords: Crustal deformation (cf. Earthquake precursor: deformation or strain) ; Volcanology ; Geodesy ; InSAR ; SAR ; JVGR ; magma ; supply
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-08-16
    Description: Magnetite is a particularly favourable site for heterogeneous bubble nucleation in magma and yet only very rarely is evidence for this preserved due to the myriad of processes that act to overprint such an association. The possibility of bubble-magnetite aggregates in magmas carries with it interesting implications for the fluid mechanics of magma bodies and for the magma mixing process responsible for the formation of andesites. We use image analysis and statistical methods to illustrate a spatial association between magnetite and bubbles in mafic enclaves. There is a large range in magnetite contents in the enclaves (up to 7.5%) which is related to the porosity of the enclaves, indicating a mechanism of enrichment of the mafic magma in magnetite. In the andesite there is no spatial association between bubbles and magnetite and the magnetite content of the andesite is small. We suggest a mechanism for enclave formation whereby in vapour-saturated magma, bubbles nucleate on magnetite. Upon intrusion into the base of an andesite magma body, these bubble-magnetite aggregates rise and ‘sweep up’ other magnetites, resulting in the accumulation of aggregates at the magma interface. Instabilities lead to the flotation of enclaves, characterized by enrichment in magnetite and bubbles.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1999-02-19
    Description: Dome growth at the Soufriere Hills volcano (1996 to 1998) was frequently accompanied by repetitive cycles of earthquakes, ground deformation, degassing, and explosive eruptions. The cycles reflected unsteady conduit flow of volatile-charged magma resulting from gas exsolution, rheological stiffening, and pressurization. The cycles, over hours to days, initiated when degassed stiff magma retarded flow in the upper conduit. Conduit pressure built with gas exsolution, causing shallow seismicity and edifice inflation. Magma and gas were then expelled and the edifice deflated. The repeat time-scale is controlled by magma ascent rates, degassing, and microlite crystallization kinetics. Cyclic behavior allows short-term forecasting of timing, and of eruption style related to explosivity potential.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Voight -- Sparks -- Miller -- Stewart -- Hoblitt -- Clarke -- Ewart -- Aspinall -- Baptie -- Calder -- Cole -- Druitt -- Hartford -- Herd -- Jackson -- Lejeune -- Lockhart -- Loughlin -- Luckett -- Lynch -- Norton -- Robertson -- Watson -- Watts -- Young -- New York, N.Y. -- Science. 1999 Feb 19;283(5405):1138-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Montserrat Volcano Observatory, Montserrat, British West Indies.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10024234" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-04-07
    Description: We present the results of a study of volcanic gases at Soufrière Hills Volcano, Montserrat, which includes the first spectroscopic measurements of the major gas species CO2 and H2S at this volcano using a Multisensor Gas Analyzer System (MultiGAS) sensor. The fluxes of CO2 and H2S were 640–2750 t/d and 84–266 t/d, respectively, during July 2008, during a prolonged eruptive pause. The flux of CO2 is similar to estimates for the entire arc from previous geochemical studies, while the measured H2S flux significantly alters our interpretation of the sulphur budget for this volcano. The fluxes of both sulphur and carbon show considerable excesses over that which can be supplied by degassing of erupted magma. We demonstrate, using thermodynamic models and published constraints on preeruptive volatile concentrations, that the gas composition and fluxes are best modeled by mixing between (1) gases derived from isobaric quenching of mafic magma against cooler andesite magma at depth and (2) gases derived from shallower rhyolitic interstitial melt within the porpyritic andesite. The escape of deep‐derived gases requires pervasive permeability or vapor advection extending to several kilometers depth in the conduit and magma storage system. These results provide more compelling evidence for both the contribution of unerupted mafic magma to the volatile budget of this andesitic arc volcano and the importance of the intruding mafic magma in sustaining the eruption. From a broader perspective, this study illustrates the importance and role of underplating mafic magmas in arc settings. These magmas play an important role in triggering and sustaining eruptions and contribute in a highly significant way to the volatile budget of arc volcanoes.
    Description: Published
    Description: Q04005
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: restricted
    Keywords: magma degassing ; thermodynamics ; volcanic gases ; Soufriere Hills ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2003-01-01
    Description: Chloride and sulphate concentrations in rainwater and water-soluble leachates from volcanic ash samples track the compositions of gas emissions at the Soufriere Hills Volcano, Montserrat, from 1996 to 2001. There are both systematic spatial and temporal variations in the chloride/sulphate ratio (expressed as the equivalent HCl/SO2 mass ratio) in rainwater and ash leachates. Temporal variations reflect changes in eruption rate and eruptive style. Mass ratios of HCl/SO2 in ash leachates correspond closely with those obtained by open-path Fourier transform infrared (OP-FTIR) spectroscopy, and reflect changes in volatile emissions throughout the eruption. Both leachate and OP-FTIR spectroscopic analyses show mass ratios of HCl/SO2 〉 1 during dome growth, and HCl/SO2 〈 1 during non-eruptive periods. The HCl/SO2 mass ratios in rainwater samples from 1996 and 1997 show temporal variations that correlate with changes in extrusion rate. The HCl/SO2 ratios in plume-affected rainwater and ash leachates from June and July 2001 correlate positively with increasing rockfall energy, and with increasing eruption rate prior to a dome collapse event. The HCl/SO2 mass ratios in water-soluble ash leachates and rainwater samples collected at the same time and from the same sites, are linearly correlated, with rainwater HCl/SO2 ratios systematically two to three times higher than ash leachate ratios. Spatial patterns of rainwater pH, and HCl/SO2 in rainwater and ash leachates are principally influenced by the proximity of the sampling sites to the active dome, and to the typical pattern of dispersion of the plume by tropospheric winds. These results demonstrate that rainwater chemistry and ash leachate analysis provides a useful indicator of volcanic activity, and represents a valuable supplement to volcano surveillance efforts.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-02-24
    Description: We present the results of the first systematic study of melt compositions at Pantelleria, based on both melt inclusions and matrix glasses in pantellerites from 10 eruptions during the last eruptive cycle (〈45 kyr). We present major and trace element compositions, as well as data on the volatiles sulphur (S), fluorine (F), chlorine (Cl), water (H 2 O), carbon dioxide (CO 2 ) and lithium (Li) Rare earth element (REE) compositions were inverted using the program INVMEL to establish the melt fraction vs depth relationship in the Pantellerian mantle source region. Inversion indicates that melts are generated by ~1·7% melting of a light rare earth element (LREE)-enriched mantle source. The source lies principally within the spinel–garnet transition zone, which, on the basis of trace element ratios, shows some affinity to the source of North African magmatism. Major and trace element data indicate a gap in melt compositions at intermediate compositions, consistent with previously published whole-rock data. This gap rules out the possibility of explaining chemical variability in the Pantelleria lavas merely by changes in the crystal content of the magmas. Principal component analysis of major element glass compositions shows that the liquid line of descent for mafic melt compositions is controlled by clinopyroxene, plagioclase, magnetite and olivine crystallization. Alkali feldspar, clinopyroxene, ilmenite and olivine or aenigmatite crystallization controls the liquid line of descent for the silicic melt compositions, with aenigmatite broadly replacing olivine in the most evolved magmas. Trace element modelling indicates that 96% fractional crystallization is required to generate pantellerites from alkali basalts at Pantelleria (through trachytes, generated after 76% fractional crystallization). We have measured pantellerite volatile concentrations in melt inclusions and in matrix glasses from a variety of eruptions. Melt inclusions, on average, contain 350 ppm S, 3500 ppm F and 9000 ppm Cl. We have measured up to 4·9 wt % H 2 O and 150 ppm CO 2 in melt inclusions. Li–H 2 O systematics and Cl abundances in melt inclusions are consistent with partitioning of Li and Cl into a subcritical hydrosaline fluid at low pressures. The volatiles H 2 O and CO 2 are used to estimate melt equilibration pressures, which reach a maximum of 1·5 kbar. Temperatures of 800°C are calculated for the most evolved pantellerites, using published feldspar–melt geothermometers, and up to 870°C for the least evolved samples. Low melt viscosities are calculated for the range of pantellerite compositions observed and may account for rapid differentiation by crystal settling. Stable density stratification of the magma chamber is reflected in the eruption of generally progressively more fractionated compositions after the Green Tuff eruption during the last eruptive cycle. Some anomalies in this trend may be explained by variation in the relative rates of eruption vs fractionation. The density stratification is expected to be enhanced and further stabilized by the efficient migration of a fluid phase to the roof of the magma chamber. The sulphur data are used in combination with published experimental partitioning data for peralkaline rhyolites to estimate the sulphur yield to the atmosphere for a large pantelleritic eruption similar to the Green Tuff. This is expected to be markedly higher than for a similar-sized metaluminous rhyolitic or dacitic eruption, mainly owing to the higher bulk sulphur content, lower fluid–melt partition coefficients, and rapid differentiation and vapour phase segregation in the magma chamber.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2003-01-01
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-08-14
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-04-15
    Print ISSN: 0258-8900
    Electronic ISSN: 1432-0819
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...