ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Flow, turbulence and combustion 65 (2000), S. 489-504 
    ISSN: 1573-1987
    Keywords: adjoint methods ; data assimilation ; optimal control ; model errors ; order reduction ; Kalman filtering
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract One of the main hypothese made in variational data assimilation is to consider that the model is a strong constraint of the minimization, i.e. that the model describes exactly the behavior of the system. Obviously the hypothesis is never respected. We propose here an alternative to the 4D-Var that takes into account model errors by adding a nonphysical term into the model equation and controlling this term. A practical application is proposed on a simple case and a reduction of the size of control using preferred directions is introduced to make the method affordable for realistic applications.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-04-01
    Description: Longitudinal characterization of dysfunctional T cell-activation during human acute Ebola infection Cell Death and Disease 7, e2164 (March 2016). doi:10.1038/cddis.2016.55 Authors: C Agrati, C Castilletti, R Casetti, A Sacchi, L Falasca, F Turchi, N Tumino, V Bordoni, E Cimini, D Viola, E Lalle, L Bordi, S Lanini, F Martini, E Nicastri, N Petrosillo, V Puro, M Piacentini, A Di Caro, G P Kobinger, A Zumla, G Ippolito & M R Capobianchi
    Electronic ISSN: 2041-4889
    Topics: Biology , Medicine
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-05-03
    Description: Author(s): F. Piacentini, A. Avella, M. P. Levi, R. Lussana, F. Villa, A. Tosi, F. Zappa, M. Gramegna, G. Brida, I. P. Degiovanni, and M. Genovese Weak value measurements have recently given rise to a great amount of interest in both the possibility of measurement amplification and the chance for further quantum mechanics foundations investigation. In particular, a question emerged about weak values being proof of the incompatibility between q… [Phys. Rev. Lett. 116, 180401] Published Mon May 02, 2016
    Keywords: General Physics: Statistical and Quantum Mechanics, Quantum Information, etc.
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-10-21
    Description: Author(s): F. Piacentini, A. Avella, M. P. Levi, M. Gramegna, G. Brida, I. P. Degiovanni, E. Cohen, R. Lussana, F. Villa, A. Tosi, F. Zappa, and M. Genovese One of the most intriguing aspects of quantum mechanics is the impossibility of measuring at the same time observables corresponding to noncommuting operators, because of quantum uncertainty. This impossibility can be partially relaxed when considering joint or sequential weak value evaluation. Inde… [Phys. Rev. Lett. 117, 170402] Published Thu Oct 20, 2016
    Keywords: General Physics: Statistical and Quantum Mechanics, Quantum Information, etc.
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-02-13
    Description: The transport pathways of carbon monoxide (CO) in the African Upper Troposphere (UT) during the West African Monsoon (WAM) is investigated through the assimilation of CO observations by the Aura Microwave Limb Sounder (MLS) in the MOCAGE Chemistry Transport Model (CTM). The assimilation setup, based on a 3-D First Guess at Assimilation Time (3-D-FGAT) variational method is described. Comparisons between the assimilated CO fields and in situ airborne observations from the MOZAIC program between Europe and both Southern Africa and Southeast Asia show an overall good agreement around the lowermost pressure level sampled by MLS (~215 hPa). The 4-D assimilated fields averaged over the month of July 2006 have been used to determine the main dynamical processes responsible for the transport of CO in the African UT. The studied period corresponds to the second AMMA (African Monsoon Multidisciplinary Analyses) aircraft campaign. At 220 hPa, the CO distribution is characterized by a latitudinal maximum around 5° N mostly driven by convective uplift of air masses impacted by biomass burning from Southern Africa, uplifted within the WAM region and vented predominantly southward by the upper branch of the winter hemisphere Hadley cell. Above 150 hPa, the African CO distribution is characterized by a broad maximum over northern Africa. This maximum is mostly controlled by the large scale UT circulation driven by the Asian Summer Monsoon (ASM) and characterized by the Asian Monsoon Anticyclone (AMA) centered at 30° N and the Tropical Easterly Jet (TEJ) on the southern flank of the anticyclone. Asian pollution uplifted to the UT over large region of Southeast Asia is trapped within the AMA and transported by the anticyclonic circulation over Northeast Africa. South of the AMA, the TEJ is responsible for the tranport of CO-enriched air masses from India and Southeast Asia over Africa. Using the high time resolution provided by the 4-D assimilated fields, we give evidence that the variability of the African CO distribution above 150 hPa and north of the WAM region is mainly driven by the synoptic dynamical variability of both the AMA and the TEJ.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-10-01
    Description: This paper presents a complete characterization of a very deep stratospheric intrusion which occurred over the British Isles on 15 August 2007. The signature of this event is diagnosed using ozonesonde measurements over Lerwick, UK (60.14° N, 1.19° W) and is also well characterized using meteorological analyses from the global operational weather prediction model of Météo-France, ARPEGE. Modelled as well as assimilated fields of both ozone (O3) and carbon monoxide (CO) have been used in order to better document this event. The paper also presents a demonstration of the capability of O3 and CO assimilated fields to better describe a stratosphere-troposphere exchange (STE) event in comparison with the free run modelled O3 and CO fields. O3 and CO from Aura/MLS and Terra/MOPITT instruments, respectively, are assimilated into the three-dimensional chemical transport model MOCAGE of Météo-France using a variational 3-D-FGAT (First Guess at Appropriate Time) method within the MOCAGE-PALM assimilation system. The usefulness of assimilated MOPITT CO data in a STE study is demonstrated in this novel result. The study shows that the use of the model MOCAGE gives consistent 3-D fields capable of describing the synoptic evolution of the event. However, modelled O3 and CO vertical distributions do not provide a quantitative evaluation of the intrusion. Although the assimilation of MLS data improves the distribution of O3 above the tropopause compared to the free model run, it is not sufficient to reproduce the stratospheric intrusion event well. Conversely, assimilated MOPITT CO allows a better description of the stratospheric intrusion event. Indeed, the horizontal distribution of the CO assimilated field is consistent with meteorological analyses. Moreover, the vertical distribution of the CO assimilated field is in accordance with the potential vorticity distribution and reveals a deeper intrusion from the lower stratosphere downward to the mid-troposphere compared to the O3 assimilated field. This study clearly demonstrates the capability of the assimilation of MOPITT CO to improve the CO distribution in the upper troposphere and lower stratosphere region. In addition, the behaviour of CO assimilated field is consistent with the synoptic evolution of the meteorological conditions. Therefore, the results of this study open the perspectives for using MOPITT CO in the STE studies.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-06-26
    Description: The transport pathways of carbon monoxide (CO) in the African Upper Troposphere (UT) during the West African Monsoon (WAM) is investigated through the assimilation of CO observations by the Aura Microwave Limb Sounder (MLS) in the MOCAGE Chemistry Transport Model (CTM). The assimilation setup, based on a 3-D First Guess at Assimilation Time (3-D-FGAT) variational method is described. Comparisons between the assimilated CO fields and in situ airborne observations from the MOZAIC program between Europe and both Southern Africa and Southeast Asia show an overall good agreement around the lowermost pressure level sampled by MLS (~215 hPa). The 4-D assimilated fields averaged over the month of July 2006 have been used to determine the main dynamical processes responsible for the transport of CO in the African UT. The studied period corresponds to the second AMMA (African Monsoon Multidisciplinary Analyses) aircraft campaign. At 220 hPa, the CO distribution is characterized by a latitudinal maximum around 5° N mostly driven by convective uplift of air masses impacted by biomass burning from Southern Africa, uplifted within the WAM region and vented predominantly southward by the upper branch of the winter hemisphere Hadley cell. Above 150 hPa, the African CO distribution is characterized by a broad maximum over northern Africa. This maximum is mostly controlled by the large scale UT circulation driven by the Asian Summer Monsoon (ASM) and characterized by the Asian Monsoon Anticyclone (AMA) centered at 30° N and the Tropical Easterly Jet (TEJ) on the southern flank of the anticyclone. Asian pollution uplifted to the UT over large region of Southeast Asia is trapped within the AMA and transported by the anticyclonic circulation over Northeast Africa. South of the AMA, the TEJ is responsible for the tranport of CO-enriched air masses from India and Southeast Asia over Africa. Using the high time resolution provided by the 4-D assimilated fields, we give evidence that the variability of the African CO distribution above 150 hPa and north of the WAM region is mainly driven by the synoptic dynamical variability of both the AMA and the TEJ.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-07-06
    Description: This paper presents an evaluation of a new linear parameterization valid for the troposphere and the stratosphere, based on a first order approximation of the carbon monoxide (CO) continuity equation. This linear scheme (hereinafter noted LINCO) has been implemented in the 3-D Chemical Transport Model (CTM) MOCAGE (MOdèle de Chimie Atmospherique Grande Echelle). First, a one and a half years of LINCO simulation has been compared to output obtained from a detailed chemical scheme output. The mean differences between both schemes are about ±25 ppbv (part per billion by volume) or 15% in the troposphere and ±10 ppbv or 100% in the stratosphere. Second, LINCO has been compared to diverse observations from satellite instruments covering the troposphere (Measurements Of Pollution In The Troposphere: MOPITT) and the stratosphere (Microwave Limb Sounder: MLS) and also from aircraft (Measurements of ozone and water vapour by Airbus in-service aircraft: MOZAIC programme) mostly flying in the upper troposphere and lower stratosphere (UTLS). In the troposphere, the LINCO seasonal variations as well as the vertical and horizontal distributions are quite close to MOPITT CO observations. However, a bias of ~−40 ppbv is observed at 700 Pa between LINCO and MOPITT. In the stratosphere, MLS and LINCO present similar large-scale patterns, except over the poles where the CO concentration is underestimated by the model. In the UTLS, LINCO presents small biases less than 2% compared to independent MOZAIC profiles. Third, we assimilated MOPITT CO using a variational 3D-FGAT (First Guess at Appropriate Time) method in conjunction with MOCAGE for a long run of one and a half years. The data assimilation greatly improves the vertical CO distribution in the troposphere from 700 to 350 hPa compared to independent MOZAIC profiles. At 146 hPa, the assimilated CO distribution is also improved compared to MLS observations by reducing the bias up to a factor of 2 in the tropics. This study confirms that the linear scheme is able to simulate reasonably well the CO distribution in the troposphere and in the lower stratosphere. Therefore, the low computing cost of the linear scheme opens new perspectives to make free runs and CO data assimilation runs at high resolution and over periods of several years.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-03-02
    Description: This paper presents a comprehensive characterization of a very deep stratospheric intrusion which occurred over the British Isles on 15 August 2007. The signature of this event is diagnosed using ozonesonde measurements over Lerwick, UK (60.14° N, 1.19° W) and is also well characterized using meteorological analyses from the global operational weather prediction model of Météo-France, ARPEGE. Modelled as well as assimilated fields of both ozone (O3) and carbon monoxide (CO) have been used in order to better document this event. O3 and CO from Aura/MLS and Terra/MOPITT instruments, respectively, are assimilated into the three-dimensional chemical transport model MOCAGE of Météo-France using a variational 3-D-FGAT (First Guess at Appropriate Time) method. The validation of O3 and CO assimilated fields is done using self-consistency diagnostics and by comparison with independent observations such as MOZAIC (O3 and CO), AIRS (CO) and OMI (O3). It particularly shows in the upper troposphere and lower stratosphere region that the assimilated fields are closer to MOZAIC than the free model run. The O3 bias between MOZAIC and the analyses is −11.5 ppbv with a RMS of 22.4 ppbv and a correlation coefficient of 0.93, whereas between MOZAIC and the free model run, the corresponding values are 33 ppbv, 38.5 ppbv and 0.83, respectively. In the same way, for CO, the bias, RMS and correlation coefficient between MOZAIC and the analyses are −3.16 ppbv, 13 ppbv and 0.79, respectively, whereas between MOZAIC and the free model they are 6.3 ppbv, 16.6 ppbv and 0.71, respectively. The paper also presents a demonstration of the capability of O3 and CO assimilated fields to better describe a stratosphere-troposphere exchange (STE) event in comparison with the free run modelled O3 and CO fields. Although the assimilation of MLS data improves the distribution of O3 above the tropopause compared to the free model run, it is not sufficient to reproduce the STE event well. Assimilated MOPITT CO allows a better qualitative description of the stratospheric intrusion event. The MOPITT CO analyses appear more promising than the MLS O3 analyses in terms of their ability to capture a deep STE event. Therefore, the results of this study open the perspectives for using MOPITT CO in the STE studies.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-03-12
    Description: This paper presents an evaluation of a new linear parameterization valid for the troposphere and the stratosphere, based on a first order approximation of the carbon monoxide (CO) continuity equation. This linear scheme (hereinafter noted LINCO) has been implemented in the 3-D Chemical Transport Model (CTM) MOCAGE of Météo-France. On the one hand, a one and a half years of LINCO simulation has been compared to output obtained from a detailed chemical scheme output. In spite of small differences, the seasonal and global CO distributions obtained by both schemes present similar general characteristics. The mean differences between both schemes remain small within about ±25 ppbv (part per billion by volume) in the troposphere and ±15 ppbv in the stratosphere. On the other hand, LINCO has been compared to diverse observations from satellite instruments covering the troposphere (Measurements Of Pollution In The Troposphere: MOPITT) and the stratosphere (Microwave Limb Sounder: MLS) and also from aircraft (Measurements of ozone and water vapour by Airbus in-service aircraft: MOZAIC programme) mostly flying in the upper troposphere and lower stratosphere. A good agreement is generally found in the troposphere and the lower stratosphere. In the troposphere, the LINCO seasonal variations as well as the vertical and horizontal distributions are quite close to MOPITT CO observations. However, a bias of ~−40 ppbv is observed at 700 hPa between LINCO and MOPITT which is probably caused by too low emission values. In the stratosphere, MLS and LINCO present similar large-scale patterns, except over the poles where the CO concentration is underestimated by the model. We suggest that the underestimation of CO at polar latitudes is not related to the linear scheme but is induced by a too rapid transport by the meridional circulation. In the UTLS (Upper Troposphere Lower Stratosphere), LINCO tends to slightly overestimate the MOZAIC aircraft observations, with general small biases less than 2%. LINCO is a simple parameterization compared to a detailed chemical scheme, allowing very fast calculations and thus making possible long reanalyses of MOPITT CO data. The computational cost just corresponds to the transport of an additional passive tracer. For this, we used a variational 3-D-FGAT (First Guess at Appropriate Time) method in conjunction with MOCAGE for a long run of one and a half years. The data assimilation greatly improves the vertical CO distribution in the troposphere from 700 to 350 hPa compared to independent MOZAIC profiles. At 146 hPa, the assimilated CO 2-D distribution is improved compared to MLS observations by reducing the bias up to a factor of 2 in the tropics. At extratropical latitudes, the assimilated fields tend to underestimate the CO concentrations resulting from an excessive equator to pole circulation. This study confirms that the linear scheme is able to simulate reasonably well the CO distribution in the troposphere and in the lower stratosphere. Therefore, the low computing cost of the linear scheme opens new perspectives to make free runs and CO data assimilation runs at high resolution and over periods of several years.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...