ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0992-7689
    Keywords: Meteorology and atmospheric dynamics ; Convective processes ; Waves and tides
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Systematic westerly biases in the southern hemisphere wintertime flow and easterly equatorial biases are experienced in the Météo-France climate model. These biases are found to be much reduced when a simple parameterization is introduced to take into account the vertical momentum transfer through the gravity waves excited by deep convection. These waves are quasi-stationary in the frame of reference moving with convection and they propagate vertically to higher levels in the atmosphere, where they may exert a significant deceleration of the mean flow at levels where dissipation occurs. Sixty-day experiments have been performed from a multiyear simulation with the standard 31 levels for a summer and a winter month, and with a T42 horizontal resolution. The impact of this parameterization on the integration of the model is found to be generally positive, with a significant deceleration in the westerly stratospheric jet and with a reduction of the easterly equatorial bias. The sensitivity of the Météo-France climate model to vertical resolution is also investigated by increasing the number of vertical levels, without moving the top of the model. The vertical resolution is increased up to 41 levels, using two kinds of level distribution. For the first, the increase in vertical resolution concerns especially the troposphere (with 22 levels in the troposphere), and the second treats the whole atmosphere in a homogeneous way (with 15 levels in the troposphere); the standard version of 31 levels has 10 levels in the troposphere. A comparison is made between the dynamical aspects of the simulations. The zonal wind and precipitation are presented and compared for each resolution. A positive impact is found with the finer tropospheric resolution on the precipitation in the mid-latitudes and on the westerly stratospheric jet, but the general impact on the model climate is weak, the physical parameterizations used appear to be mostly independent to the vertical resolution.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Planetary and Space Science 35 (1987), S. 637-645 
    ISSN: 0032-0633
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Planetary and Space Science 29 (1981), S. 707-712 
    ISSN: 0032-0633
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Planetary and Space Science 31 (1983), S. 1033-1052 
    ISSN: 0032-0633
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Time sclice experiments are performed with the atmospheric GCM ARPEGE, developed at Météo-France, to study the impact to increases in the atmospheric carbon dioxide. This spectral model runs at T42 horizontal resolution with 30 vertical layers including a comprehensive tropospheric and stratospheric resolution and a prognostic parameterization of the ozone mixing ratio. The model is forced in a 5-year control run by climatological SSTs and sea-ice extents in order to obtain an accurate simulation of the present-day climate. Two perturbed runs are performed using SSTs and sea-ice extents for doubled CO2 concentration, obtained from transient runs performed by two coupled atmospheric-oceanic models run at the Max Planck Institute (MPI) in Hamburg and the Hadley Centre (HC). A global surface temperature warming of 1.6 K is obtained with the MPI SST anomalies and 1.9 K with the HC SST anomalies. The precipitation rate increases by 4.2% (and 4.7%). The features obtained in the stratosphere (a cooling increasing with the altitude and an increase in the ozone mixing ratio) are not sensitive to the oceanic forcing. On the contrary, the anomalies in the troposphere such as a warming increasing with altitude, an acceleration of westerly jets and a raised cloud height, depend on the oceanic forcing imposed in the two perturbed runs. Special attention is given to continental areas where the impact of the oceanic forcing is studied over eight regions around the globe. Regions sensitive to oceanic forcing such as Europe are identified in contrast with areas where the patterns are driven by land-surface physical processes, such as over continental Asia. Finally, the Köppen classification is applied to the climate simulated in the three experiments. Both doubled CO2 runs show the same predominance of global warming over precipitation changes in the Kbppen analyses.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract. Time sclice experiments are performed with the atmospheric GCM ARPEGE, developed at Météo-France, to study the impact to increases in the atmospheric carbon dioxide. This spectral model runs at T42 horizontal resolution with 30 vertical layers including a comprehensive tropospheric and stratospheric resolution and a prognostic parameterization of the ozone mixing ratio. The model is forced in a 5-year control run by climatological SSTs and sea-ice extents in order to obtain an accurate simulation of the present-day climate. Two perturbed runs are performed using SSTs and sea-ice extents for doubled CO2 concentration, obtained from transient runs performed by two coupled atmospheric-oceanic models run at the Max Planck Institute (MPI) in Hamburg and the Hadley Centre (HC). A global surface temperature warming of 1.6 K is obtained with the MPI SST anomalies and 1.9 K with the HC SST anomalies. The precipitation rate increases by 4.2% (and 4.7%). The features obtained in the stratosphere (a cooling increasing with the altitude and an increase in the ozone mixing ratio) are not sensitive to the oceanic forcing. On the contrary, the anomalies in the troposphere such as a warming increasing with altitude, an acceleration of westerly jets and a raised cloud height, depend on the oceanic forcing imposed in the two perturbed runs. Special attention is given to continental areas where the impact of the oceanic forcing is studied over eight regions around the globe. Regions sensitive to oceanic forcing such as Europe are identified in contrast with areas where the patterns are driven by land-surface physical processes, such as over continental Asia. Finally, the Köppen classification is applied to the climate simulated in the three experiments. Both doubled CO2 runs show the same predominance of global warming over precipitation changes in the Köppen analyses.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 10 (1994), S. 249-266 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A new atmospheric model has been developed jointly by Météo-France, and the European Centre for Medium-range Weather Forecasts (ECMWF) under the acronyms ARPEGE (action de recherche petite echelle grande echelle, which means research project on small and large scales) and IFS (integrated forecast system). This model includes, inter alia, an atmospheric general circulation model (GCM) which is intended by the French climate modelling community to be used for studying the anthropogenic climate impact. A preliminary version of this model has been available since 1992. This paper describes its main characteristics. Three 10-year integrations of this model having spectral horizontal resolutions of T21, T42, and T79 have been performed using prescribed monthly mean sea surface temperatures (SST) observed from 1979 until 1988. The results of these integrations are presented and compared with the observed climatology. The comparison is made for the winter (DJF) and summer (JJA) periods. It is shown that the model is capable of reproducing the observed climatology in a generally successful manner.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The climate response to an increase in carbon dioxide and sea surface temperatures is examined using the Météo-France climate model. This model has a high vertical resolution in the stratosphere and predicts the evolution of the ozone mixing ratio. This quantity is fully interactive with radiation and photochemical production and loss rates are accounted for. Results from a 5-year control run indicate a reasonable agreement with observed climatologies. A 5-year simulation is performed with a doubled CO2 concentration using, as lower boundary conditions, mean surface temperatures anomalies and sea ice limits predicted for the years 56–65 of a 100-year transient simulation performed at Hamburg with a global coupled atmosphere-ocean model. The perturbed simulation produces a global mean surface air warming of 1.4 K and an increase in global mean precipitation rate of 4%. Outside the high latitudes in the Northern Hemisphere, the model simulates a strong cooling in the stratosphere reaching 10 K near the stratopause. Temperature increases are noticed in the lower polar stratosphere of the Northern Hemisphere caused by an intensification in the frequency of sudden warmings in the perturbed simulation. The low and mid-latitude stratospheric cooling leads to an ozone column enhancement of about 5%. Other features present in similar studies are exhibited in the troposphere such as the stronger surface warming over polar regions of the Northern Hemisphere, the summer time soil moisture drying in mid-latitudes and the increase in high convective cloudiness in tropical regions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract. The climate response to an increase in carbon dioxide and sea surface temperatures is examined using the Météo-France climate model. This model has a high vertical resolution in the stratosphere and predicts the evolution of the ozone mixing ratio. This quantity is fully interactive with radiation and photochemical production and loss rates are accounted for. Results from a 5-year control run indicate a reasonable agreement with observed climatologies. A 5-year simulation is performed with a doubled CO2 concentration using, as lower boundary conditions, mean surface temperatures anomalies and sea ice limits predicted for the years 56–65 of a 100-year transient simulation performed at Hamburg with a global coupled atmosphere-ocean model. The perturbed simulation produces a global mean surface air warming of 1.4 K and an increase in global mean precipitation rate of 4%. Outside the high latitudes in the Northern Hemisphere, the model simulates a strong cooling in the stratosphere reaching 10 K near the stratopause. Temperature increases are noticed in the lower polar stratosphere of the Northern Hemisphere caused by an intensification in the frequency of sudden warmings in the perturbed simulation. The low and mid-latitude stratospheric cooling leads to an ozone column enhancement of about 5%. Other features present in similar studies are exhibited in the troposphere such as the stronger surface warming over polar regions of the Northern Hemisphere, the summer time soil moisture drying in mid-latitudes and the increase in high convective cloudiness in tropical regions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1981-06-01
    Print ISSN: 0032-0633
    Electronic ISSN: 1873-5088
    Topics: Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...