ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: An axial extensometer able to measure global bone strain magnitudes and rates encountered during physiological activity, and suitable for use in vivo in human subjects, is described. The extensometer uses paired capacitive sensors mounted to intraosseus pins and allows measurement of strain due to bending in the plane of the extensometer as well as uniaxial compression or tension. Data are presented for validation of the device against a surface-mounted strain gage in an acrylic specimen under dynamic four-point bending, with square wave and sinusoidal loading inputs up to 1500 mu epsilon and 20 Hz, representative of physiological strain magnitudes and frequencies. Pearson's correlation coefficient (r) between extensometer and strain gage ranged from 0.960 to 0.999. Mean differences between extensometer and strain gage ranged up to 15.3 mu epsilon. Errors in the extensometer output were directly proportional to the degree of bending that occurs in the specimen, however, these errors were predictable and less than 1 mu epsilon for the loading regime studied. The device is capable of tracking strain rates in excess of 90,000 mu epsilon/s.
    Keywords: Life Sciences (General)
    Type: Journal of biomechanics (ISSN 0021-9290); Volume 34; 3; 385-91
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The current design of the International Space Station (ISS) Treadmill Harness has been reported to cause pain and discomfort to crewmembers during exercise. The Harness Station Development Test Objective (SDTO) provided participating crewmembers (n = 6) with a new harness design, the "Glenn Harness," to evaluate for comfort and loading as compared to the current Treadmill Harness. A novel suite of load-sensing instrumentation was developed to noninvasively measure load distribution and provided a first-ever quantification of actual dynamic loads during treadmill exercise. In addition, crew debriefs provided feedback on harness preference and overall impressions. Conclusions: Post-flight analysis in returned Glenn Harnesses (n = 3) showed minimal wear and tear. Four of the six subjects found the Glenn Harness to be more comfortable in this on-orbit, side-by-side comparison as measured by the crew comfort questionnaire and crew debriefs. Specific areas for improvement have been identified, and forward recommendations will be provided to the Human Research Program. The protocol developed for the SDTO provided valuable insight into crew comfort issues, design improvements, and loading preferences for exercise harnessing, which lays the groundwork for better harnessing systems and training protocols.
    Keywords: Man/System Technology and Life Support
    Type: E-17734 , E-17858 , 18th IAA Humans in Space Symposium; Apr 11, 2011 - Apr 15, 2011; Houston, TX`; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-13
    Description: In order to minimize the loss of bone and muscle mass during spaceflight, the Multi-purpose Crew Vehicle (MPCV) will include an exercise device and enough free space within the cabin for astronauts to use the device effectively. The NASA Digital Astronaut Project (DAP) has been tasked with using computational modeling to aid in determining whether or not the available operational volume is sufficient for in-flight exercise.Motion capture data was acquired using a 12-camera Smart DX system (BTS Bioengineering, Brooklyn, NY), while exercisers performed 9 resistive exercises without volume restrictions in a 1g environment. Data were collected from two male subjects, one being in the 99th percentile of height and the other in the 50th percentile of height, using between 25 and 60 motion capture markers. Motion capture data was also recorded as a third subject, also near the 50th percentile in height, performed aerobic rowing during a parabolic flight. A motion capture system and algorithms developed previously and presented at last years HRP-IWS were utilized to collect and process the data from the parabolic flight [1]. These motions were applied to a scaled version of a biomechanical model within the biomechanical modeling software OpenSim [2], and the volume sweeps of the motions were visually assessed against an imported CAD model of the operational volume. Further numerical analysis was performed using Matlab (Mathworks, Natick, MA) and the OpenSim API. This analysis determined the location of every marker in space over the duration of the exercise motion, and the distance of each marker to the nearest surface of the volume. Containment of the exercise motions within the operational volume was determined on a per-exercise and per-subject basis. The orientation of the exerciser and the angle of the footplate were two important factors upon which containment was dependent. Regions where the exercise motion exceeds the bounds of the operational volume have been identified by determining which markers from the motion capture exceed the operational volume and by how much. A credibility assessment of this analysis was performed in accordance with NASA-STD-7009 prior to delivery to the MPCV program.
    Keywords: Aerospace Medicine
    Type: GRC-E-DAA-TN38780 , Annual Space Radiation Investigators'' Workshop; Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States|Human Research Program Investigator''s Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-13
    Description: Long-duration space flight poses many hazards to the health of the crew. Among those hazards is the physiological deconditioning of the musculoskeletal and cardiovascular systems due to prolonged exposure to microgravity. To combat this erosion of physical condition space flight may take on the crew, the Human Research Program (HRP) is charged with developing Advanced Exercise Concepts to maintain astronaut health and fitness during long-term missions, while keeping device mass, power, and volume to a minimum. The goal of this effort is to preserve the physical capability of the crew to perform mission critical tasks in transit and during planetary surface operations. The HULK is a pneumatic-based exercise system, which provides both resistive and aerobic modes to protect against human deconditioning in microgravity. Its design targeted the International Space Station (ISS) Advanced Resistive Exercise Device (ARED) high level performance characteristics and provides up to 600 foot pounds resitive loading with the capability to allow for eccentric to concentric (E:C) ratios of higher than 1:1 through a DC motor assist component. The device's rowing mode allows for high cadence aerobic activity. The HULK parabolic flight campaign, conducted through the NASA Flight Opportunities Program at Ellington Field, resulted in the creation of device specific data sets including low fidelity motion capture, accelerometry and both inline and ground reaction forces. These data provide a critical link in understanding how to vibration isolate the device in both ISS and space transit applications. Secondarily, the study of human exercise and associated body kinematics in microgravity allows for more complete understanding of human to machine interface designs to allow for maximum functionality of the device in microgravity.
    Keywords: Aerospace Medicine; Man/System Technology and Life Support
    Type: GRC-E-DAA-TN20359 , Human Research Program Investigators Workshop; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-10
    Description: Exercise in microgravity is one of the most promising countermeasures to the dual problems of space flight-induced bone loss and muscle atrophy. Although exercise in microgravity has been studied extensively from a metabolic standpoint, little research has focused on the efficacy of different forms of exercise for maintaining musculoskeletal integrity. Exercise protocols have not been effective in preventing muscle atrophy and bone loss during space flight, especially in the lower extremities. In 1-G, however, animal experiments have clearly indicated that: (1) certain bone strains and strain rates do stimulate bone deposition, and (2) repetitive loading of the lower extremity can increase osteonal bone formation even as proximally as the vertebral column. Such studies have also indicated that a relatively small number of appropriate loading cycles may lead to bone deposition. This suggests that an optimal exercise regimen might be able to maintain bone and muscle integrity during space flight. Since there is evidence that the bones and muscles of the lower limbs are particularly affected by space flight, the present study addressed two major aims: (1) quantify externally applied impact loads and rates of loading under the feet during tethered jumping exercises, and (2) determine the amount of eccentric and concentric whole-muscle activity during these jumping exercises in true and in simulated zero-gravity.
    Keywords: Aerospace Medicine
    Type: Proceedings of the First Biennial Space Biomedical Investigators' Workshop; 365-367
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Extended spaceflight typically results in the loss of muscular strength and bone density due to exposure to microgravity. Resistive exercise countermeasures have been developed to maintain musculoskeletal health during spaceflight. The Advanced Resistive Exercise Device (ARED) is the "gold standard" of available devices; however, its footprint and volume are too large for use in space capsules employed in exploration missions. The Hybrid Ultimate Lifting Kit (HULK) device, with its smaller footprint, is a prototype exercise device for exploration missions. This work models the deadlift exercise being performed on the HULK device using biomechanical simulation, with the long-term goal to improve and optimize astronauts' exercise prescriptions, to maximize the benefit of exercise while minimizing time and effort invested.
    Keywords: Aerospace Medicine
    Type: GRC-E-DAA-TN29808 , 2016 Human Research Program Investigators Workshop; Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Long duration space travel to destinations such as Mars or an asteroid will expose astronauts to extended periods of reduced gravity. Astronauts will use an exercise regime for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Since the area available in the spacecraft for an exercise device is limited and gravity is not present to aid loading, compact resistance exercise device prototypes are being developed. Since it is difficult to rigorously test these proposed devices in space flight, computational modeling provides an estimation of the muscle forces, joint torques and joint loads during exercise to gain insight on the efficacy to protect the musculoskeletal health of astronauts.
    Keywords: Computer Programming and Software; Aerospace Medicine
    Type: GRC-E-DAA-TN19807 , NASA Human Research Program Investigators'' Workshop: Integrated Pathways to Mars; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States|Space Radiation Investigators'' Workshop and Behavioral Health and Performance Working Group; Jan 12, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: MOTIVATION: Spaceflight countermeasures mitigate the harmful effects of the space environment on astronaut health and performance. Exercise has historically been used as a countermeasure to physical deconditioning, and additional countermeasures including lower body negative pressure, blood flow occlusion and artificial gravity are being researched as countermeasures to spaceflight-induced fluid shifts. The NASA Digital Astronaut Project uses computational models of physiological systems to inform countermeasure design and to predict countermeasure efficacy.OVERVIEW: Computational modeling supports the development of the exercise devices that will be flown on NASAs new exploration crew vehicles. Biomechanical modeling is used to inform design requirements to ensure that exercises can be properly performed within the volume allocated for exercise and to determine whether the limited mass, volume and power requirements of the devices will affect biomechanical outcomes. Models of muscle atrophy and bone remodeling can predict device efficacy for protecting musculoskeletal health during long-duration missions. A lumped-parameter whole-body model of the fluids within the body, which includes the blood within the cardiovascular system, the cerebral spinal fluid, interstitial fluid and lymphatic system fluid, estimates compartmental changes in pressure and volume due to gravitational changes. These models simulate fluid shift countermeasure effects and predict the associated changes in tissue strain in areas of physiological interest to aid in predicting countermeasure effectiveness. SIGNIFICANCE: Development and testing of spaceflight countermeasure prototypes are resource-intensive efforts. Computational modeling can supplement this process by performing simulations that reduce the amount of necessary experimental testing. Outcomes of the simulations are often important for the definition of design requirements and the identification of factors essential in ensuring countermeasure efficacy.
    Keywords: Aerospace Medicine
    Type: GRC-E-DAA-TN41999 , Aerospace Medical Association Annual Scientific Meeting; Apr 29, 2017 - May 04, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: During long-duration spaceflight missions, astronauts exposure to microgravity without adequate countermeasures can result in losses of muscular strength and endurance, as well as loss of bone mass. As a countermeasure to this challenge, astronauts engage in resistive exercise during spaceflight to maintain their musculoskeletal function. The Hybrid Ultimate Lifting Kit (HULK) has been designed as a prototype exercise device for an exploration-class vehicle; the HULK features a much smaller footprint than previous devices such as the Advanced Resistive Exercise Device (ARED) on the International Space Station (ISS), which makes the HULK suitable for extended spaceflight missions in vehicles with limited volume. As current ISS exercise countermeasure equipment represents an improvement over previous generations of such devices, the ARED is being employed as a benchmark of functional performance. This project involves the development of a biomechanical model of the deadlift exercise, and is novel in that it is the first exercise analyzed in this context to include the upper limbs in the loading path, in contrast to the squat, single-leg squat, and heel raise exercises also being modeled by our team. OpenSim software is employed to develop these biomechanical models of humans performing resistive exercises to assess and improve the new exercise device designs. Analyses include determining differences in joint and muscle forces when using different loading strategies with the device, comparing and contrasting with the ARED benchmark, and determining whether the loading is sufficient to maintain musculoskeletal health. During data collection, the number of repetitions, load, cadence, stance, and grip width are controlled in order to facilitate comparisons between loading configurations. To date, data have been collected for two human subjects performing the deadlift exercise on the HULK device using two different loading conditions. Recorded data include motion capture, electromyography (EMG), ground reaction forces, device load cell data, photos and videos, and anthropometric data. Work is ongoing to perform biomechanical analyses including inverse kinematics and inverse dynamics to compare different versions of the deadlift model in order to determine which provides an appropriate level of detail to study this exercise. This work is supported by the National Space Biomedical Research Institute through NCC 9-58.
    Keywords: Aerospace Medicine
    Type: GRC-E-DAA-TN36771 , American Society for Gravitational and Space Research Meeting; Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Man/System Technology and Life Support; Aerospace Medicine
    Type: E-661250 , 2012 NASA Human Research Program Investigators'' Workshop; Feb 14, 2012 - Feb 16, 2012; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...