ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: MODSIM World 2009 - Conference and Expo; Oct 14, 2009 - Oct 16, 2009; Virginia Beach, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-13
    Description: In order to minimize the loss of bone and muscle mass during spaceflight, the Multi-purpose Crew Vehicle (MPCV) will include an exercise device and enough free space within the cabin for astronauts to use the device effectively. The NASA Digital Astronaut Project (DAP) has been tasked with using computational modeling to aid in determining whether or not the available operational volume is sufficient for in-flight exercise.Motion capture data was acquired using a 12-camera Smart DX system (BTS Bioengineering, Brooklyn, NY), while exercisers performed 9 resistive exercises without volume restrictions in a 1g environment. Data were collected from two male subjects, one being in the 99th percentile of height and the other in the 50th percentile of height, using between 25 and 60 motion capture markers. Motion capture data was also recorded as a third subject, also near the 50th percentile in height, performed aerobic rowing during a parabolic flight. A motion capture system and algorithms developed previously and presented at last years HRP-IWS were utilized to collect and process the data from the parabolic flight [1]. These motions were applied to a scaled version of a biomechanical model within the biomechanical modeling software OpenSim [2], and the volume sweeps of the motions were visually assessed against an imported CAD model of the operational volume. Further numerical analysis was performed using Matlab (Mathworks, Natick, MA) and the OpenSim API. This analysis determined the location of every marker in space over the duration of the exercise motion, and the distance of each marker to the nearest surface of the volume. Containment of the exercise motions within the operational volume was determined on a per-exercise and per-subject basis. The orientation of the exerciser and the angle of the footplate were two important factors upon which containment was dependent. Regions where the exercise motion exceeds the bounds of the operational volume have been identified by determining which markers from the motion capture exceed the operational volume and by how much. A credibility assessment of this analysis was performed in accordance with NASA-STD-7009 prior to delivery to the MPCV program.
    Keywords: Aerospace Medicine
    Type: GRC-E-DAA-TN38780 , Annual Space Radiation Investigators'' Workshop; Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States|Human Research Program Investigator''s Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Statistics and Probability; Aerospace Medicine
    Type: E-663292 , NASA Human Research Program (HRP) Investigators'' Workshop; Feb 14, 2012 - Feb 16, 2012; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-13
    Description: One of the main objectives is to provide a tool to help HHC address Bone Gap Osteo 4: We don't know the contribution of each risk factor on bone loss and recovery of bone strength and which factors are the best targets for countermeasure application; and Osteo7: We need to identify options for mitigation of early onset osteoporosis before, during, and after spaceflight.
    Keywords: Aerospace Medicine
    Type: E-664429 , NASA Human Research Program Investigators'' Workshop (HRP 2014); Feb 11, 2014 - Feb 14, 2014; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-13
    Description: NASA's Digital Astronaut Project (DAP) implements well-vetted computational models to predict and assess spaceflight health and performance risks, and enhance countermeasure development. DAP provides expertise and computation tools to its research customers for model development, integration, or analysis. DAP is currently supporting the NASA Exercise Physiology and Countermeasures (ExPC) project by integrating their biomechanical models of specific exercise movements with dynamic models of the devices on which the exercises were performed. This presentation focuses on the development of a high fidelity dynamic module of the Advanced Resistive Exercise Device (ARED) on board the ISS. The ARED module, illustrated in the figure below, was developed using the Adams (MSC Santa Ana, California) simulation package. The Adams package provides the capabilities to perform multi rigid body, flexible body, and mixed dynamic analyses of complex mechanisms. These capabilities were applied to accurately simulate: Inertial and mass properties of the device such as the vibration isolation system (VIS) effects and other ARED components, Non-linear joint friction effects, The gas law dynamics of the vacuum cylinders and VIS components using custom written differential state equations, The ARED flywheel dynamics, including torque limiting clutch. Design data from the JSC ARED Engineering team was utilized in developing the model. This included solid modeling geometry files, component/system specifications, engineering reports and available data sets. The Adams ARED module is importable into LifeMOD (Life Modeler, Inc., San Clemente, CA) for biomechanical analyses of different resistive exercises such as squat and dead-lift. Using motion capture data from ground test subjects, the ExPC developed biomechanical exercise models in LifeMOD. The Adams ARED device module was then integrated with the exercise subject model into one integrated dynamic model. This presentation will describe the development of the Adams ARED module including its capabilities, limitations, and assumptions. Preliminary results, validation activities, and a practical application of the module to inform the relative effect of the flywheels on exercise will be discussed.
    Keywords: Aerospace Medicine; Man/System Technology and Life Support
    Type: E-661208 , NASA Human Research Program Investigators'' Workshop; Feb 14, 2012 - Feb 16, 2012; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-13
    Description: Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to assist loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to counteract the effect reduced gravity has on the body. Astronauts will exercise on a flywheel based device on the second Orion Exploration Mission (EM2). The effect that the flywheel load profile has on biomechanics is unknown when compared to free weights or a simulated free weight profile. The purpose of this evaluation is to compare the differences in lower body kinematics and kinetics between the flywheel and free weight profile. Test subjects were instrumented with reflective markers for motion capture data collection while exercising on the Device for Aerobic and Resistive Training (DART) prototype developed by TDA Research, Inc. of Wheat Ridge, CO. Exercises performed were either the squat while wearing a harness or deadlift while grasping a T-bar, both of which interfaced with the DART through a rope cable. The DART, a motorized device controlled via software, is capable of producing different load profiles. Profiles include simulated free weights with adjustable eccentric overload capability and flywheel. Test variables included the applied device load and the load profile, both set through the DART software interface. Motion capture data was collected with a 12 camera system (Smart-DX, BTS Bioengineering, Brooklyn, NY). Bilateral ground reaction force data were collected with force plates (P6000, BTS Bioengineering). DART cable force was recorded through an internal load cell. Data was collected from a total of four test subjects. The three repetition maximum was determined for each test subject for both squat and deadlift. High, medium and low loads were determined based on this maximum. The test subject performed five repetitions of each exercise at each load and each test trial was repeated twice. Cadence was controlled during exercising. Biomechanical data were used to drive the models utilizing the OpenSim software platform. Subject specific models were scaled to match the anthropometrics of the test subjects and used to estimate the peak joint angle, joint range of motion, the peak joint moment and the joint moment impulse of the lower extremity joints and the lumbar joint.These are preliminary results because the data analysis is ongoing. There was a lot of inter-subject variability, however, in general, there was a greater peak lumbar flexion angle for the flywheel squat exercise. There was a trend towards a greater range of motion at the hip for the squat exercise with free weight. There was also a greater hip extension, lumbar extension and ankle plantar flexion impulse moment during the squat exercise with free weight. During the deadlift exercise, the peak knee flexion angle and peak knee extension moment were greater when using the free weight profile. For deadlift, the hip extension, lumbar extension and ankle plantar flexion impulse moment tended to be greater with the free weight profile. Overall, the kinematic and kinetic outcomes for the flywheel profile were either statistically the same as free weight profile in many cases, significantly reduced in a few cases, and rarely higher.
    Keywords: Aerospace Medicine
    Type: GRC-E-DAA-TN50483 , 2018 NASA Human Research Program Investigators'' Workshop; Jan 22, 2018 - Jan 25, 2018; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Extended spaceflight typically results in the loss of muscular strength and bone density due to exposure to microgravity. Resistive exercise countermeasures have been developed to maintain musculoskeletal health during spaceflight. The Advanced Resistive Exercise Device (ARED) is the "gold standard" of available devices; however, its footprint and volume are too large for use in space capsules employed in exploration missions. The Hybrid Ultimate Lifting Kit (HULK) device, with its smaller footprint, is a prototype exercise device for exploration missions. This work models the deadlift exercise being performed on the HULK device using biomechanical simulation, with the long-term goal to improve and optimize astronauts' exercise prescriptions, to maximize the benefit of exercise while minimizing time and effort invested.
    Keywords: Aerospace Medicine
    Type: GRC-E-DAA-TN29808 , 2016 Human Research Program Investigators Workshop; Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: E-663203 , Human Research Program Investigators Workshop; Feb 13, 2012 - Feb 16, 2012; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Long duration space travel to destinations such as Mars or an asteroid will expose astronauts to extended periods of reduced gravity. Astronauts will use an exercise regime for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Since the area available in the spacecraft for an exercise device is limited and gravity is not present to aid loading, compact resistance exercise device prototypes are being developed. Since it is difficult to rigorously test these proposed devices in space flight, computational modeling provides an estimation of the muscle forces, joint torques and joint loads during exercise to gain insight on the efficacy to protect the musculoskeletal health of astronauts.
    Keywords: Computer Programming and Software; Aerospace Medicine
    Type: GRC-E-DAA-TN19807 , NASA Human Research Program Investigators'' Workshop: Integrated Pathways to Mars; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States|Space Radiation Investigators'' Workshop and Behavioral Health and Performance Working Group; Jan 12, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: MOTIVATION: Spaceflight countermeasures mitigate the harmful effects of the space environment on astronaut health and performance. Exercise has historically been used as a countermeasure to physical deconditioning, and additional countermeasures including lower body negative pressure, blood flow occlusion and artificial gravity are being researched as countermeasures to spaceflight-induced fluid shifts. The NASA Digital Astronaut Project uses computational models of physiological systems to inform countermeasure design and to predict countermeasure efficacy.OVERVIEW: Computational modeling supports the development of the exercise devices that will be flown on NASAs new exploration crew vehicles. Biomechanical modeling is used to inform design requirements to ensure that exercises can be properly performed within the volume allocated for exercise and to determine whether the limited mass, volume and power requirements of the devices will affect biomechanical outcomes. Models of muscle atrophy and bone remodeling can predict device efficacy for protecting musculoskeletal health during long-duration missions. A lumped-parameter whole-body model of the fluids within the body, which includes the blood within the cardiovascular system, the cerebral spinal fluid, interstitial fluid and lymphatic system fluid, estimates compartmental changes in pressure and volume due to gravitational changes. These models simulate fluid shift countermeasure effects and predict the associated changes in tissue strain in areas of physiological interest to aid in predicting countermeasure effectiveness. SIGNIFICANCE: Development and testing of spaceflight countermeasure prototypes are resource-intensive efforts. Computational modeling can supplement this process by performing simulations that reduce the amount of necessary experimental testing. Outcomes of the simulations are often important for the definition of design requirements and the identification of factors essential in ensuring countermeasure efficacy.
    Keywords: Aerospace Medicine
    Type: GRC-E-DAA-TN41999 , Aerospace Medical Association Annual Scientific Meeting; Apr 29, 2017 - May 04, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...