ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 150 (1989), S. 131-138 
    ISSN: 1615-6102
    Keywords: Plastids ; Plastid division rings
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The ultrastructure of the constricted region of dividing plastids of spinach, bean, turnip, tobacco, and wheat has been studied. In these species, an electron-opaque, ring-like structure (RS) girdles the constricted region of plastids in advanced stages of division. The RS is a compound entity composed of two concentric rings of electron-opaque materials; one on the stromal face of the inner membrane and the other on the cytoplasmic face of the outer membrane. It was concluded that the compound nature of the RS is highly conserved in angiosperms being present in some cereal grasses and in plants representing four different orders of dicotyledonous plants. Evidence indicating that the electron-opaque materials of the RS are integrated into the envelope membranes was also provided and it was suggested that the envelope in the region of the RS may have unique properties. For spinach, it was also noted that plastids with deeply constricted necks tend to have RSs with lower volumes than those from wider necks and that endoplasmic reticulum was frequently present in the cytoplasm of the constriction region.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1615-6102
    Keywords: Chara corallina ; Charasome development ; Photosynthetic HCO3 − utilization ; Membrane potential
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Cells ofChara corallina grown under high CO2 culture conditions were able to utilize exogenous HCO3 − to give appreciable rates of net photosynthesis. Since these rates of photosynthesis could be detected within 10 min of being transferred from high-CO2 to normal HCO3 − (pH 8.2) culture conditions, it would appear that the HCO3 −-accumulating system ofChara is not fully repressed under these high CO2 culture conditions. The membrane potential of these cells also responded to light/dark treatments in a manner consistent with the operation of a HCO3 − acquisition system. With prolonged exposure (2–6 days) to CPW/B, net photosynthesis continued to increase towards the expected control rate and, in parallel, the electrical responses elicited by light/dark treatments converged towards those obtained on control (CPW/B-grown)Chara cells. Charasomes were absent in CPW/CO2-grownChara, but redeveloped in mature cells once the culture was returned to CPW/B conditions; a minimum period of 7 days in CPW/B was required before charasomes were detected in tissue examined in the transmission electron microscope. As the above-detailed physiological and electrophysiological features were observed with both axial and whorl cells ofChara in which charasomes were completely absent, we conclude that this specialized organelle is not an essential component for photosynthetic utilization of exogenous HCO3 − in this species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...