ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Development genes and evolution 164 (1970), S. 247-260 
    ISSN: 1432-041X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Development genes and evolution 163 (1969), S. 197-220 
    ISSN: 1432-041X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Description / Table of Contents: Zusammenfassung 1. Zeitliche und räumliche Aspekte der postembryonalen Entwicklung des Sehlappens inDanaus plexippus plexippus L. sind mittels Rekonstruktion von Serialschnitten und3H-Thymidin-Markierung zur Darstellung von Zellteilungszentren und Zellmigration untersucht worden. 2. Die Entwicklung des Sehlappens beginnt in frühen Larvenstadien und geht kontinuierlich vor sich, ohne Zyklen, die den Häutungen entsprechen würden. Die ersten neuen Zellen werden im ersten Larvenstadium produziert, und die Zellproduktion kommt einige Tage nach der Verpuppung zum Stillstand. 3. Die Entwicklung der adulten Sehzentren vollzieht sich unabhängig vom larvalen Sehzentrum und auch unabhängig von der adulten Augenentwicklung, die erst bei der Verpuppung anfängt. Bei der Verpuppung wandern die larvalen Stemmata entlang dem Stemmatalnerven zum Gehirn; der Stemmatalnerv bleibt erhalten und dient später als Rahmen, in dem die Neuronen der Ommatidien das Gehirn erreichen. 4. Ganglionzellen des adulten Sehlappens entstehen durch zwei gewundene, stabartige Aggregate von Neuroblasten, die inneren und äußeren Sehlappen-Anlagen, die lateral des Protocerebrums liegen und schon im Gehirn der frisch geschlüpften Larve vorhanden sind. Die Neuroblasten dieser Anlage teilen sich symmetrisch, wobei neue Neuroblasten erzeugt werden, aber auch asymmetrisch, wobei jeweils ein Neuroblast und eine kleinere Zelle gebildet wird; letztere ist eine Ganglion-Mutterzelle. Nachfolgende Teilungen der Ganglion-Mutterzellen produzieren neue Ganglionzellen, die kontinuierlich durch immer neue Zellen von der Anlage verdrängt werden. Nach der Verpuppung nimmt die mitotische Aktivität in den Anlagen ab und die Neuroblasten degenerieren. Am vierten Tage nach der Verpuppung sind die Anlagen verschwunden. 5. Differenzierung der Fasern beginnt innerhalb weniger Tage nach der Zellbildung. Fasern erstrecken sich in Bündeln gewöhnlich in Richtung des Zentrums der gewundenen Anlagen, wo sie die Neuropilmassen bilden. Mit Beiträgen der wachsenden Population von Ganglionzellen wachsen die Fasermassen rasch und nehmen an Komplexität zu. 6. Die geometrische Disposition der Anlage, Cortices und Neuropile ist dynamisch und abhängig voneinander. Progressive Änderungen in der Disposition der Anlagen sind das Resultat der kombinierten Wirkung einer zunehmenden Neuroblastenpopulation, wachsender Cortices, und sich ausdehnender Fasermassen zwischen den Armen der Anlagen. Gleichzeitig ändert sich auch die Form der Cortices und Fasermassen, die den Umrissen der Anlagen folgen. Der Komplex aller dieser Teile, anfänglich klein und gewunden, wird allmählich größer und entwunden bis schließlich, zum Zeitpunkt der Anlagen-Degeneration, die drei Fasermassen und ihre Cortices in einigermaßen endgültiger Position liegen. 7. Die äußere Anlage bildet Zellen des Lamina-Cortex an ihrem seitlichen Rand, und Zellen der Medulla am medialen Rand. Zellen des Lobula-Cortex werden durch Stränge von Neuroblasten der inneren Anlage gebildet, die sich lateral zwischen die Arme der gewundenen äußeren Anlage erstrecken. 8. Zellen des Medulla-Cortex sind zum ersten Mal im zweiten Larvenstadium sichtbar, und mehrere Tage später wird die Medulla-Fasermasse sichtbar. Cortex und Fasermasse liegen medial der äußeren Anlage, die immer mehr lateral zu liegen kommt dadurch, daß immer neue Zellen gebildet werden. Zellen, die am Anfang des dritten Larvenstadiums mit3H-Thymidin markiert werden, findet man als tangential zum Sehlappen liegend. Zellen, die während des vierten und fünften Stadiums markiert werden, kommen nahe bei den tangentialen Zellen zu liegen, und Zellen, die bei der Verpuppung markiert werden, liegen schließlich am seitlichen Rand des Cortex. 9. Produktion des Lamina-Cortex beginnt später und verläuft langsamer. Hier werden Zellen zum ersten Mal während des vierten Stadiums sichtbar und bedecken den lateralen Teil des Sehlappens. Studien mit markierten Zellen zeigen, daß die zuerst gebildeten Zellen schlußendlich in der am meisten posterior gelegenen Region des Lamina-Cortex zu liegen kommen. Die Lamina Fasermasse wird zum ersten Mal im Hirn des mittleren fünften Stadiums sichtbar. 10. Während des größten Teils der Larvalzeit bildet der Lobula-Cortex einen Zellpfropf direkt innerhalb der Lamina. Während die Anlage gewunden ist, liegen die erstgebildeten Zellen im Zentrum des Pfropfens, aber schließlich liegen sie im mediansten Teil des Cortex. Produktion der Lobulazellen beginnt während des dritten Stadiums, und im mittleren vierten Stadium kann man medial der Lobulazellen bereits die Lobula-Neuropile sehen. 11. Durch die autoradiographischen Markierungsexperimente wurde es möglich, das Alter von Zellen in einem bestimmten Entwicklungsstadium zu schätzen. Weil dieses Material eine organisierte Anordnung von Zellen verschiedenen Alters und verschiedenen Reifungsalters darstellt innerhalb eines einzigen Organismus, dürfte es sich als ausgezeichnetes Modell für das Studium progressiver Differenzierung von Neuronen erweisen.
    Notes: Summary 1. Temporal and spatial aspects of postembryonic optic lobe development in a Lepidopteran,Danaus plexippus plexippus L., were analyzed using serial section reconstructions and H3-thymidine radioautography to display loci of cell production and progressive movements of populations of cells. 2. Optic lobe development begins early in larval life and is continuous without perceptible fluctuations corresponding to molting. The production of new cells begins during the first larval stages and is completed within a few days after pupation. 3. Development of adult optic centers appears to be independent of the larval optic center and also of adult eye development which does not get underway until pupation. At pupation the larval stemmata migrate toward the brain along the stemmatal nerve which persists and later serves as the framework by which ommatidial neurones reach the brain. 4. Ganglion cells of the adult optic lobe are produced by two coiled rod-like aggregates of neuroblasts, the inner and outer optic lobe anlagen, which lie lateral to the protocerebrum and are already present in the brain of the newly hatched larva. Neuroblasts of the anlagen divide both symetrically to produce more neuroblasts and asymmetrically to yield one neuroblast and one smaller cell, the ganglion-mother cell. Subsequent ganglion-mother cell divisions produce the new ganglion cells which are continuously displaced from the anlage by additional cells. Following pupation mitotic activity in the anlagen diminishes and neuroblasts degenerate. By the fourth day after pupation the anlagen have disappeared. 5. Fiber differentiation begins within a few days of cell formation. Fibers travel in bundles usually toward the center of the coiled anlagen where they form the neuropile masses. With contributions from a growing population of ganglion cells, fibermasses grow rapidly in size and complexity. 6. The geometric arrangement of anlagen, cortices, and neuropile is dynamic and interdependent. Progressive changes in anlagen configuration result from the combined effects of an increasing neuroblast population, growing optic cortices, and expanding fibermasses between the arms of the anlagen. In turn, the cortices and fibermasses which follow anlagen contours also change form. The complex of these parts, initially small and coiled, gradually enlarges and uncoils until at the time of anlagen degeneration the three optic fibermasses and their cortices are in approximately their final arrangement. 7. The outer anlage forms cells of the lamina cortex at its lateral rim and cells of the medulla at its medial rim. Cells of the lobula cortex are produced by strands of inner anlage neuroblasts extending laterally between the arms of the coiled outer anlage. 8. Cells of the medulla cortex are first seen during the second larval instar and several days later the medulla fibermass is discernible. Cortex and fibermass lie medial to the outer anlage which is moved progressively more laterally as more cells are produced. Cells labelled with H3-Td R at the beginning of the third instar become the tangential cells of the adult optic lobe. Those labelled at the fourth and fith stages occupy positions near the tangential cells, and those labelled at pupation ultimately lie at the lateral edge of the cortex. 9. Production of the lamina cortex begins later and procedes more slowly. Cells here are first apparent during the fourth instar and form a cellular cap covering the lateral part of the optic lobe. Labelling studies show that the earliest formed cells finally occupy the most posterior region of the lamina cortex. The lamina fibermass is first seen in the mid-fifth instar brain. 10. For most of larval life the lobula cortex forms a plug of cells just inside the lamina. While the anlage remains coiled, the first-formed cells are at the center of the plug, but ultimately they lie at the most medial part of the cortex. Production of lobula cells begins during the third instar and by the mid-fourth instar the lobula neuropile can be seen medial to them. 11. As a result of these studies with H3-Td R injection and fixation after varying intervals it has been possible to estimate the age of cells at a particular developmental stage. Because this material offers an organized arrangement of cells of a wide range of identifiable ages and levels of maturation within a single individual, it provides an excellent model for the study of progressive neurone differentiation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Development genes and evolution 162 (1969), S. 197-217 
    ISSN: 1432-041X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary 1. Cellular morphogenesis during postembryonic brain development inDanaus plexippus plexippus L. was examined using histological techniques including radioautography. 2. The production of new neurones is continuous throughout larval and pupal stages and shows no fluctuations corresponding to ecdysis. Glial cell production, on the other hand, occurs at the time of molting. 3. New ganglion cells are formed by the division of neuroblasts found in aggregates or isolated among larval ganglion cells. Asymmetrical neuroblast divisions yield one neuroblast and one ganglion-mother cell which then divides at least once to form the new ganglion cells. Such divisions begin earlier inDanaus than in other investigated Lepidoptera. Symmetrical divisions yielding two neuroblasts also occur, but only among aggregated neuroblasts. 4. Radioautographs of brains fixed at progressive intervals after Tritiated Thymidine (H3TdR) injection have permitted description of the basic pattern by which cells of the adult brain cortex are laid out and progressive changes in the relationship of new ganglion cells derived from a single neuroblast. Ganglion-mother cells are deposited between the neuroblast and the neuropile, thus forming a row of cells which move the neuroblast progressively farther from the neuropile. New ganglion cells produced by ganglion-mother cell mitoses, which usually are oriented at 45° angles to the neuropile, expand the cell cluster. Differentiating fibers of these cells are apparent within a few days of their production and seem to enter the neuropile in one bundle. Later with increased neuropile volume and further cell differentiation the cells are no longer clumped and thus are not recognizable as offspring of a single neuroblast. 5. Neuroblasts found scattered among the larval ganglion cells arise from cells near the neuropile. These cells, at first indistinguishable from their neighbors, gradually assume the size and ready stainability of neuroblasts and subsequently divide according to the pattern described above. 6. Scattered neuroblasts degenerate beginning shortly after pupation and have completely disappeared by the end of the fourth day. 7. Except in the developing optic lobe, glial cell numbers increase through the proliferation of already existing glial cells. All glial cells show H3TdR uptake during a 12 hour period surrounding each larval-larval molt and for a somewhat longer period after pupation. However, in the larval stages mitotic figures were seen only among glial I, II, and IV. Glial I cells divide through the entire last larval stage and for two days following pupation. Large irregular mitoses seen among glial III cells at pupation indicate that these cells are probably polyploid. 8. In the newly forming adult optic lobe glial II, III, and IV cells appear to develop from preganglion cells or cells indistinguishable from them. These cells gradually stain more and more darkly, segregate into the normal glial positions, and subsequently divide in accord with other glial cells. 9. At the end of the fifth instar the perineurium (glial I cells), which begins to thicken during the third larval instar, is multilayered and contains many vacuolar cells. Just prior to pupation the neurilemma begins to disintegrate and during the next five days all but the cells closest to the brain disappear. Hemocytes are seen to engulf portions of the disintegrating neurilemma and already degenerating perineurial cells, but do not seem to engulf live cells. The glial I cells remaining adjacent to the brain secrete a new neurilemma. 10. There is no evidence for mass destruction of larval ganglion cells by either autolysis or phagocytosis, and only in the antennal center is there evidence of degeneration of larval cells (Nordlander andEdwards, in press).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 218 (1968), S. 780-781 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Adult ganglion cells of the Danaus optic lobe are formed by divisions of aggregated neuroblasts located at the lateral surface of the immature brain. Each neuroblast divides asymmetrically to produce another neuroblast and a smaller cell, the ganglion mother cell which then lies medial to it (Fig. ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 126 (1972), S. 157-181 
    ISSN: 1432-0878
    Keywords: Nerve degeneration ; Nerve regeneration ; Crayfish ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Cut and crushed crayfish claw nerves were examined with the electron microscope at intervals up to 6 months after lesion. In sections 1 centimeter distal to the lesion there were no signs of degeneration among the giant motor axons even after many months. Swelling of glial wrappings was observed within 48 hours of nerve severance and was particularly notable in the innermost glial layer, the adaxonal layer. Golgi elements, rough endoplasmic reticulum, and mitochondria accumulated in the glia. These changes were perhaps indicative of a greater supportive role required by the severed axons. Regeneration from the proximal stumps of the giant axons began within one week and had proceeded across the lesion gap by 4 weeks. Axon sprouts appeared to travel toward the terminals within the glial sheaths of the distal giant axon segments. Before regeneration was complete, as determined by a simple behaviour test, the regenerating axons occupied increasing proportions of the sheath space. After regeneration was complete occasional degenerations were seen among the sprouts. These degenerations may have occurred in regenerating axons which had grown to the incorrect muscles. The original distal giant axons probably degenerated, as well, after regeneration was complete. There was no evidence of rehealing of proximal and distal segments of the axons.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 166 (1976), S. 445-460 
    ISSN: 1432-0878
    Keywords: Synaptoid profiles ; Nerve regeneration ; Crustacean
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Synapse-like structures occurring in regenerating crayfish peripheral nerves are characterized by aggregates of small (250 to 600 Å) electron lucent vesicles adjacent to a thickened “presynaptic” membrane. Such synaptoid profiles are seen opposite other axons, glial processes or extracellular fibrous material. Junctions with cellular elements do not show “postsynaptic” specializations. These complexes are compared to axo-glial synapses in the developing spinal cord and to synaptoid configurations observed by others in vertebrate and invertebrate neurosecretory systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 126 (1968), S. 67-93 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Cell population and neuropile morphology of larval and adult brains of the monarch butterfly, Danaus plexippus plexippus, L., are compared. The larval brain is in continuous transition, the processes of adult brain development being underway from the earliest larval stages. It is characterized by a less diverse population of cells and more homogenous fiber areas than those of the adult. Neuroblasts, which divide to form the neurones of the adult brain, occur either in discrete proliferation centers or scattered among the larval ganglion cells. The larval brain contains, in addition to small homogeneous antennal centers and a distinct larval optic center, rapidly developing adult optic centers, corpora pedunculata, and protocerebral bridge. The larval brain lacks a central body. Major differences between larval and adult brains are clearly related to the increased dependence of the adult upon sensory input from the eyes and antennae.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1972-01-01
    Print ISSN: 0302-766X
    Electronic ISSN: 1432-0878
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1969-01-01
    Print ISSN: 0949-944X
    Electronic ISSN: 1432-041X
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1969-01-01
    Print ISSN: 0949-944X
    Electronic ISSN: 1432-041X
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...