ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bakker, Dorothee C E; O'Brien, Kevin M; Pfeil, Benjamin; Currie, Kim I; Kozyr, Alexander; Landa, Camilla S; Lauvset, Siv K; Metzl, Nicolas; Nakaoka, Shin-Ichiro; Nojiri, Yukihiro; Nonaka, Isao; Olsen, Are; Omar, Abdirahman M; Pierrot, Denis; Saito, Shu; Smith, Karl; Sutton, Adrienne; Sullivan, Kevin; Tilbrook, Bronte; Wanninkhof, Rik; Akl, John; Alin, Simone R; Barbero, Leticia; Barrera, Kira E; Beaumont, Laurence; Becker, Meike; Bernard, Christophe; Bott, Randy; Byrne, Robert; Cai, Wei-Jun; Cosca, Catherine E; Cross, Jessica; Daly, Kendra L; Danguy, Théo; De Carlo, Eric Heinen; Dietrich, Colin; Feely, Richard A; Fiedler, Björn; Glockzin, Michael; Gove, Matthew D; Goyet, Catherine; Guillot, Antoine; Hales, Burke; Hartman, Sue E; Herndon, Julian; Hoppema, Mario; Humphreys, Matthew P; Hunt, Christopher W; Huss, Betty; Hydes, David; Ibánhez, J Severino P; Ishii, Masao; Johannessen, Truls; Jones, Steve D; Kitidis, Vassilis; Knorr, Paul O; Körtzinger, Arne; Kosugi, Naohiro; Lee, Charity M; Lefèvre, Nathalie; Lo Monaco, Claire; Liu, Xuewu; Maenner, Stacy M; Manke, Ansley; Manzello, Derek P; Mathis, Jeremy T; Mickett, John; Millero, Frank J; Monacci, Natalie; Monteiro, Pedro; Morell, Julio; Munro, David R; Musielewicz, Sylvia; Neill, Craig; Newberger, Timothy; Newton, Jan; Noakes, Scott; Noh, Jae Hoon; Ohman, Mark; Ólafsdóttir, Sólveig Rósa; Ólafsson, Jón; Osborne, John; Padín, Xose Antonio; Rehder, Gregor; Reimer, Janet J; Robbins, Lisa L; Rutgersson, Anna; Sabine, Christopher L; Salisbury, Joe; Sasano, Daisuke; Schlitzer, Reiner; Schuster, Ute; Send, Uwe; Sieger, Rainer; Skjelvan, Ingunn; Steinhoff, Tobias; Sutherland, Stewart C; Sweeney, Colm; Takahashi, Taro; Telszewski, Maciej; Vandemark, Doug; van Heuven, Steven; Wallace, Douglas WR; Woosley, Ryan J; Wynn, Jonathan G; Yates, Kimberly Kaye (in prep.): Version 5 of the Surface Ocean CO2 Atlas (SOCAT).
    Publication Date: 2024-02-17
    Description: The Surface Ocean CO2 Atlas (SOCAT) is a synthesis activity by the international marine carbon research community (〉100 contributors). SOCAT version 5 has 21.5 million quality-controlled, surface ocean fCO2 (fugacity of carbon dioxide) observations from 1957 to 2017 for the global oceans and coastal seas. Calibrated sensor data are also available. Automation allows annual, public releases. SOCAT data is discoverable, accessible and citable. SOCAT enables quantification of the ocean carbon sink and ocean acidification and evaluation of ocean biogeochemical models. SOCAT, which celebrates its 10th anniversary in 2017, represents a milestone in biogeochemical and climate research and in informing policy.
    Keywords: SOCAT; Surface Ocean CO2 Atlas Project
    Type: Dataset
    Format: application/zip, 823 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Park, K T; Lee, Kitack; Shin, Kyoungsoon; Yang, Eun Jin; Hyun, Bonggil; Kim, Ja-Myung; Noh, Jae Hoon; Kim, Miok; Kong, Bokyung; Choi, Dong Han; Choi, Su-Jin; Jang, Pung-Guk; Jeong, Hae Jin (2014): Direct Linkage between Dimethyl Sulfide Production and Microzooplankton Grazing, Resulting from Prey Composition Change under High Partial Pressure of Carbon Dioxide Conditions. Environmental Science & Technology, 48(9), 4750-4756, https://doi.org/10.1021/es403351h
    Publication Date: 2024-03-15
    Description: Oceanic dimethyl sulfide (DMS) is the enzymatic cleavage product of the algal metabolite dimethylsulfoniopropionate (DMSP) and is the most abundant form of sulfur released into the atmosphere. To investigate the effects of two emerging environmental threats (ocean acidification and warming) on marine DMS production, we performed a large-scale perturbation experiment in a coastal environment. At both ambient temperature and 2 °C warmer, an increase in partial pressure of carbon dioxide (pCO2) in seawater (160-830 ppmv pCO2) favored the growth of large diatoms, which outcompeted other phytoplankton species in a natural phytoplankton assemblage and reduced the growth rate of smaller, DMSP-rich phototrophic dinoflagellates. This decreased the grazing rate of heterotrophic dinoflagellates (ubiquitous micrograzers), resulting in reduced DMS production via grazing activity. Both the magnitude and sign of the effect of pCO2 on possible future oceanic DMS production were strongly linked to pCO2-induced alterations to the phytoplankton community and the cellular DMSP content of the dominant species and its association with micrograzers.
    Keywords: 19-Hexanoyloxyfucoxanthin; Alexandrium sp.; Alkalinity, total; Alloxanthin; Ammonia; Aragonite saturation state; Behaviour; Bicarbonate ion; Biomass; Calcite saturation state; Calculated; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, organic, dissolved; Carbon, organic, particulate; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell density; Cerataulina pelagica; Chlorophyll a; Chlorophyll b; Coast and continental shelf; Community composition and diversity; Date; Dimethyl sulfide; Dimethylsulfoniopropionate, particulate; Dimethylsulfoniopropionate lyase activity; Dimethylsulfoniopropionate lyase activity, standard deviation; Entire community; EXP; Experiment; Field experiment; Fucoxanthin; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Grazing rate; Grazing rate, standard error; Identification; Incubation duration; Jangmok; Mesocosm or benthocosm; Nitrate and Nitrite; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Other metabolic rates; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; Peridinin; pH; Phosphate; Primary production/Photosynthesis; Salinity; Silicate; Species; Temperate; Temperature; Temperature, water; Treatment; Zeaxanthin
    Type: Dataset
    Format: text/tab-separated-values, 29214 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-17
    Keywords: 316420141013; 316420141013-moor; Algorithm; ChuukK1_152E_7N_Oct2014_Nov2015; DATE/TIME; Depth, bathymetric, interpolated/gridded; DEPTH, water; Distance; extracted from GLOBALVIEW-CO2; extracted from the 2-Minute Gridded Global Relief Data (ETOPO2); extracted from the NCEP/NCAR 40-Year Reanalysis Project; extracted from the World Ocean Atlas 2005; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); LATITUDE; LONGITUDE; Monitoring station; Mooring (long time); MOORY; Pressure, atmospheric, interpolated; Pressure at equilibration; Quality flag; Recomputed after SOCAT (Pfeil et al., 2013); Salinity; Salinity, interpolated; SOCAT; Surface Ocean CO2 Atlas Project; Temperature, water; Temperature at equilibration; xCO2 (air), interpolated; xCO2 (water) at sea surface temperature (dry air)
    Type: Dataset
    Format: text/tab-separated-values, 42775 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-17
    Keywords: 316420111118; 316420111118-moor; Algorithm; DATE/TIME; Depth, bathymetric, interpolated/gridded; DEPTH, water; Distance; extracted from GLOBALVIEW-CO2; extracted from the 2-Minute Gridded Global Relief Data (ETOPO2); extracted from the NCEP/NCAR 40-Year Reanalysis Project; extracted from the World Ocean Atlas 2005; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); LATITUDE; LONGITUDE; Monitoring station; Mooring (long time); MOORY; Pressure, atmospheric, interpolated; Pressure at equilibration; Quality flag; Recomputed after SOCAT (Pfeil et al., 2013); Salinity; Salinity, interpolated; SOCAT; Surface Ocean CO2 Atlas Project; Temperature, water; Temperature at equilibration; xCO2 (air), interpolated; xCO2 (water) at sea surface temperature (dry air)
    Type: Dataset
    Format: text/tab-separated-values, 53584 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-17
    Keywords: 316420130423; 316420130423-moor; Algorithm; DATE/TIME; Depth, bathymetric, interpolated/gridded; DEPTH, water; Distance; extracted from GLOBALVIEW-CO2; extracted from the 2-Minute Gridded Global Relief Data (ETOPO2); extracted from the NCEP/NCAR 40-Year Reanalysis Project; extracted from the World Ocean Atlas 2005; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); LATITUDE; LONGITUDE; Monitoring station; Mooring (long time); MOORY; Pressure, atmospheric, interpolated; Pressure at equilibration; Quality flag; Recomputed after SOCAT (Pfeil et al., 2013); Salinity; Salinity, interpolated; SOCAT; Surface Ocean CO2 Atlas Project; Temperature, water; Temperature at equilibration; xCO2 (air), interpolated; xCO2 (water) at sea surface temperature (dry air)
    Type: Dataset
    Format: text/tab-separated-values, 52457 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 13 (2016): 5065-5083, doi:10.5194/bg-13-5065-2016.
    Description: One of the major challenges to assessing the impact of ocean acidification on marine life is detecting and interpreting long-term change in the context of natural variability. This study addresses this need through a global synthesis of monthly pH and aragonite saturation state (Ωarag) climatologies for 12 open ocean, coastal, and coral reef locations using 3-hourly moored observations of surface seawater partial pressure of CO2 and pH collected together since as early as 2010. Mooring observations suggest open ocean subtropical and subarctic sites experience present-day surface pH and Ωarag conditions outside the bounds of preindustrial variability throughout most, if not all, of the year. In general, coastal mooring sites experience more natural variability and thus, more overlap with preindustrial conditions; however, present-day Ωarag conditions surpass biologically relevant thresholds associated with ocean acidification impacts on Mytilus californianus (Ωarag 〈 1.8) and Crassostrea gigas (Ωarag 〈 2.0) larvae in the California Current Ecosystem (CCE) and Mya arenaria larvae in the Gulf of Maine (Ωarag 〈 1.6). At the most variable mooring locations in coastal systems of the CCE, subseasonal conditions approached Ωarag =  1. Global and regional models and data syntheses of ship-based observations tended to underestimate seasonal variability compared to mooring observations. Efforts such as this to characterize all patterns of pH and Ωarag variability and change at key locations are fundamental to assessing present-day biological impacts of ocean acidification, further improving experimental design to interrogate organism response under real-world conditions, and improving predictive models and vulnerability assessments seeking to quantify the broader impacts of ocean acidification.
    Description: The CO2 and ocean acidification observations were funded by NOAA’s Climate Observation Division (COD) in the Climate Program Office and NOAA’s Ocean Acidification Program. The maintenance of the Stratus and WHOTS Ocean Reference Stations were also supported by NOAA COD (NA09OAR4320129). Additional support for buoy equipment, maintenance, and/or ancillary measurements was provided by NOAA through the US Integrated Ocean Observing System office: for the La Parguera buoy under a Cooperative Agreement (NA11NOS0120035) with the Caribbean Coastal Ocean Observing System, for the Chá b˘a buoy under a Cooperative Agreement (NA11NOS0120036) with the Northwest Association of Networked Ocean Observing System, for the Gray’s Reef buoy under a Cooperative Agreement (NA11NOS0120033) with the Southeast Coastal Ocean Observing Regional Association, and for the Gulf of Main buoy under a Cooperative Agreement (NA11NOS0120034) with the Northeastern Regional Association of Coastal and Ocean Observing Systems.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sutton, A. J., Feely, R. A., Maenner-Jones, S., Musielwicz, S., Osborne, J., Dietrich, C., Monacci, N., Cross, J., Bott, R., Kozyr, A., Andersson, A. J., Bates, N. R., Cai, W., Cronin, M. F., De Carlo, E. H., Hales, B., Howden, S. D., Lee, C. M., Manzello, D. P., McPhaden, M. J., Melendez, M., Mickett, J. B., Newton, J. A., Noakes, S. E., Noh, J. H., Olafsdottir, S. R., Salisbury, J. E., Send, U., Trull, T. W., Vandemark, D. C., & Weller, R. A. Autonomous seawater pCO(2) and pH time series from 40 surface buoys and the emergence of anthropogenic trends. Earth System Science Data, 11(1), (2019):421-439, doi:10.5194/essd-11-421-2019.
    Description: Ship-based time series, some now approaching over 3 decades long, are critical climate records that have dramatically improved our ability to characterize natural and anthropogenic drivers of ocean carbon dioxide (CO2) uptake and biogeochemical processes. Advancements in autonomous marine carbon sensors and technologies over the last 2 decades have led to the expansion of observations at fixed time series sites, thereby improving the capability of characterizing sub-seasonal variability in the ocean. Here, we present a data product of 40 individual autonomous moored surface ocean pCO2 (partial pressure of CO2) time series established between 2004 and 2013, 17 also include autonomous pH measurements. These time series characterize a wide range of surface ocean carbonate conditions in different oceanic (17 sites), coastal (13 sites), and coral reef (10 sites) regimes. A time of trend emergence (ToE) methodology applied to the time series that exhibit well-constrained daily to interannual variability and an estimate of decadal variability indicates that the length of sustained observations necessary to detect statistically significant anthropogenic trends varies by marine environment. The ToE estimates for seawater pCO2 and pH range from 8 to 15 years at the open ocean sites, 16 to 41 years at the coastal sites, and 9 to 22 years at the coral reef sites. Only two open ocean pCO2 time series, Woods Hole Oceanographic Institution Hawaii Ocean Time-series Station (WHOTS) in the subtropical North Pacific and Stratus in the South Pacific gyre, have been deployed longer than the estimated trend detection time and, for these, deseasoned monthly means show estimated anthropogenic trends of 1.9±0.3 and 1.6±0.3 µatm yr−1, respectively. In the future, it is possible that updates to this product will allow for the estimation of anthropogenic trends at more sites; however, the product currently provides a valuable tool in an accessible format for evaluating climatology and natural variability of surface ocean carbonate chemistry in a variety of regions. Data are available at https://doi.org/10.7289/V5DB8043 and https://www.nodc.noaa.gov/ocads/oceans/Moorings/ndp097.html (Sutton et al., 2018).
    Description: We gratefully acknowledge the major funders of the pCO2 and pH observations: the Office of Oceanic and Atmospheric Research of the National Oceanic and Atmospheric Administration, US Department of Commerce, including resources from the Ocean Observing and Monitoring Division of the Climate Program Office (fund reference number 100007298) and the Ocean Acidification Program. We rely on a long list of scientific partners and technical staff who carry out buoy maintenance, sensor deployment, and ancillary measurements at sea. We thank these partners and their funders for their continued efforts in sustaining the platforms that support these long-term pCO2 and pH observations, including the following institutions: the Australian Integrated Marine Observing System, the Caribbean Coastal Ocean Observing System, Gray's Reef National Marine Sanctuary, the Marine and Freshwater Research Institute, the Murdock Charitable Trust, the National Data Buoy Center, the National Science Foundation Division of Ocean Sciences, NOAA–Korean Ministry of Oceans and Fisheries Joint Project Agreement, the Northwest Association of Networked Ocean Observing Systems, the Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (i.e., RAMA), the University of Washington, the US Integrated Ocean Observing System, and the Washington Ocean Acidification Center. The open ocean sites are part of the OceanSITES program of the Global Ocean Observing System and the Surface Ocean CO2 Observing Network. All sites are also part of the Global Ocean Acidification Observing Network. This paper is PMEL contribution number 4797.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 2012-05-03
    Print ISSN: 0916-8370
    Electronic ISSN: 1573-868X
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-07-01
    Print ISSN: 0095-3628
    Electronic ISSN: 1432-184X
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...