ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-05-25
    Description: The Surface Ocean CO2 Atlas (SOCAT) is a synthesis of quality-controlled fCO2 (fugacity of carbon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT has 14.5 million fCO2 values from 3646 data sets covering the years 1957 to 2014. This latest version has an additional 4.4 million fCO2 values relative to version 2 and extends the record from 2011 to 2014. Version 3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately 1.2 million surface water fCO2 values per year for the years 2006 to 2012. Quality and documentation of the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water fCO2 has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer (previously known as the Cruise Data Viewer) allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. High-profile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This ESSD (Earth System Science Data) "Living Data" publication documents the methods and data sets used for the assembly of this new version of the SOCAT data collection and compares these with those used for earlier versions of the data collection (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014).
    Electronic ISSN: 1866-3591
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: Display format and highlight validity were shown to affect visual display search performance; however, these studies were conducted on small, artificial displays of alphanumeric stimuli. A study manipulating these variables was conducted using realistic, complex Space Shuttle information displays. A 2x2x3 within-subjects analysis of variance found that search times were faster for items in reformatted displays than for current displays. The significant format by highlight validity interaction showed that there was little difference in response time to both current and reformatted displays when the highlight validity was applied; however, under the non or invalid highlight conditions, search times were faster with reformatted displays. Benefits of highlighting and reformatting displays to enhance search and the necessity to consider highlight validity and format characteristics in tandem for predicting search performance are discussed.
    Keywords: MAN/SYSTEM TECHNOLOGY AND LIFE SUPPORT
    Type: In: Human Factors Society, Annual Meeting, 35th, San Francisco, CA, Sept. 2-6, 1991, Proceedings. Vol. 1 (A93-27126 09-54); p. 374-378.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Report describes study of effect of highlighting on speed with which one searches and finds information on complex alphanumeric display. In study, 12 human subjects tested with variety of information displays in which highlighting, format, and type of data manipulated.
    Keywords: MATHEMATICS AND INFORMATION SCIENCES
    Type: MSC-22024 , NASA Tech Briefs (ISSN 0145-319X); 18; 6; P. 79
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-09-27
    Description: The Surface Ocean CO2 Atlas (SOCAT) is a synthesis of quality-controlled fCO2 (fugacity of carbon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT has 14.7 million fCO2 values from 3646 data sets covering the years 1957 to 2014. This latest version has an additional 4.6 million fCO2 values relative to version 2 and extends the record from 2011 to 2014. Version 3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately 1.2 million surface water fCO2 values per year for the years 2006 to 2012. Quality and documentation of the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water fCO2 has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer (previously known as the Cruise Data Viewer) allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. High-profile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This ESSD (Earth System Science Data) "living data" publication documents the methods and data sets used for the assembly of this new version of the SOCAT data collection and compares these with those used for earlier versions of the data collection (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014). Individual data set files, included in the synthesis product, can be downloaded here: doi:10.1594/PANGAEA.849770. The gridded products are available here: doi:10.3334/CDIAC/OTG.SOCAT_V3_GRID.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-25
    Description: Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (E-FOS) are based on energy statistics and cement production data, while emissions from land-use change (E-LUC), mainly deforestation, are based on land-use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (G(ATM)) is computed from the annual changes in concentration. The ocean CO2 sink (S-OCEAN) is estimated with global ocean biogeochemistry models and observation-based fCO(2) products. The terrestrial CO2 sink (S-LAND) is estimated with dynamic global vegetation models. Additional lines of evidence on land and ocean sinks are provided by atmospheric inversions, atmospheric oxygen measurements, and Earth system models. The resulting carbon budget imbalance (B-IM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and incomplete understanding of the contemporary carbon cycle. All uncertainties are reported as +/- 1 sigma. For the year 2022, E-FOS increased by 0.9% relative to 2021, with fossil emissions at 9.9 +/- 0.5 GtC yr(-1) (10.2 +/- 0.5 GtC yr(-1) when the cement carbonation sink is not included), and E-LUC was 1.2 +/- 0.7 GtC yr(-1), for a total anthropogenic CO2 emission (including the cement carbonation sink) of 11.1 +/- 0.8 GtC yr(-1) (40.7 +/- 3.2 GtCO(2) yr(-1)). Also, for 2022, G(ATM) was 4.6 +/- 0.2 GtC yr(-1) (2.18 +/- 0.1 ppm yr(-1); ppm denotes parts per million), S-OCEAN was 2.8 +/- 0.4 GtC yr(-1), and S-LAND was 3.8 +/- 0.8 GtC yr(-1), with a B-IM of 0.1 GtC yr(-1) (i.e. total estimated sources marginally too low or sinks marginally too high). The global atmospheric CO2 concentration averaged over 2022 reached 417.1 +/- 0.1 ppm. Preliminary data for 2023 suggest an increase in E-FOS relative to 2022 of +/- 1:1% (0.0% to 2.1 %) globally and atmospheric CO2 concentration reaching 419.3 ppm, 51% above the pre-industrial level (around 278 ppm in 1750). Overall, the mean of and trend in the components of the global carbon budget are consistently estimated over the period 1959-2022, with a near-zero overall budget imbalance, although discrepancies of up to around 1 Gt Cyr(-1) persist for the representation of annual to semi-decadal variability in CO2 fluxes. Comparison of estimates from multiple approaches and observations shows the following: (1) a persistent large uncertainty in the estimate of land-use changes emissions, (2) a low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. This living-data update documents changes in methods and data sets applied to this most recent global carbon budget as well as evolving community understanding of the global carbon cycle.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-18
    Description: The presented pilot for the Synthesis Product for Ocean Time Series (SPOTS) includes data from 12 fixed ship-based time-series programs. The related stations represent unique open-ocean and coastal marine environments within the Atlantic Ocean, Pacific Ocean, Mediterranean Sea, Nordic Seas, and Caribbean Sea. The focus of the pilot has been placed on biogeochemical essential ocean variables: dissolved oxygen, dissolved inorganic nutrients, inorganic carbon (pH, total alkalinity, dissolved inorganic carbon, and partial pressure of CO2), particulate matter, and dissolved organic carbon. The time series used include a variety of temporal res- olutions (monthly, seasonal, or irregular), time ranges (10–36 years), and bottom depths (80–6000 m), with the oldest samples dating back to 1983 and the most recent one corresponding to 2021. Besides having been harmo- nized into the same format (semantics, ancillary data, units), the data were subjected to a qualitative assessment in which the applied methods were evaluated and categorized. The most recently applied methods of the time- series programs usually follow the recommendations outlined by the Bermuda Time Series Workshop report (Lorenzoni and Benway, 2013), which is used as the main reference for “method recommendations by prevalent initiatives in the field”. However, measurements of dissolved oxygen and pH, in particular, still show room for improvement. Additional data quality descriptors include precision and accuracy estimates, indicators for data variability, and offsets compared to a reference and widely recognized data product for the global ocean: the GLobal Ocean Data Analysis Project (GLODAP). Generally, these descriptors indicate a high level of continuity in measurement quality within time-series programs and a good consistency with the GLODAP data product, even though robust comparisons to the latter are limited. The data are available as (i) a merged comma-separated file that is compliant with the World Ocean Circulation Experiment (WOCE) exchange format and (ii) a format dependent on user queries via the Environmental Research Division’s Data Access Program (ERDDAP) server of the Global Ocean Observing System (GOOS). The pilot increases the data utility, findability, accessibility, interoperability, and reusability following the FAIR philosophy, enhancing the readiness of biogeochemical time series. It facilitates a variety of applications that benefit from the collective value of biogeochemical time-series observations and forms the basis for a sustained time-series living data product, SPOTS, complementing relevant products for the global interior ocean carbon data (GLobal Ocean Data Analysis Project), global surface ocean carbon data (Surface Ocean CO2 Atlas; SOCAT), and global interior and surface methane and nitrous oxide data (MarinE MethanE and NiTrous Oxide product). Aside from the actual data compilation, the pilot project produced suggestions for reporting metadata, im- plementing quality control measures, and making estimations about uncertainty. These recommendations aim to encourage the community to adopt more consistent and uniform practices for analysis and reporting and to update these practices regularly. The detailed recommendations, links to the original time-series programs, the original data, their documentation, and related efforts are available on the SPOTS website. This site also pro- vides access to the data product (DOI: https://doi.org/10.26008/1912/bco-dmo.896862.2, Lange et al., 2024) and ancillary data.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bakker, Dorothee C E; Pfeil, Benjamin; Smith, Karl; Hankin, Steven; Olsen, Are; Alin, Simone R; Cosca, Catherine E; Harasawa, Sumiko; Kozyr, Alexander; Nojiri, Yukihiro; O'Brien, Kevin M; Schuster, Ute; Telszewski, Maciej; Tilbrook, Bronte; Wada, Chisato; Akl, John; Barbero, Leticia; Bates, Nicolas R; Boutin, Jacqueline; Bozec, Yann; Cai, Wei-Jun; Castle, Robert D; Chavez, Francisco P; Chen, Lei; Chierici, Melissa; Currie, Kim I; de Baar, Hein J W; Evans, Wiley; Feely, Richard A; Fransson, Agneta; Gao, Zhongyong; Hales, Burke; Hardman-Mountford, Nicolas J; Hoppema, Mario; Huang, Wei-Jen; Hunt, Christopher W; Huss, Betty; Ichikawa, Tadafumi; Johannessen, Truls; Jones, Elizabeth M; Jones, Steve D; Jutterstrøm, Sara; Kitidis, Vassilis; Körtzinger, Arne; Landschützer, Peter; Lauvset, Siv K; Lefèvre, Nathalie; Manke, Ansley; Mathis, Jeremy T; Merlivat, Liliane; Metzl, Nicolas; Murata, Akihiko; Newberger, Timothy; Omar, Abdirahman M; Ono, Tsuneo; Park, Geun-Ha; Paterson, Kristina; Pierrot, Denis; Ríos, Aida F; Sabine, Christopher L; Saito, Shu; Salisbury, Joe; Sarma, Vedula V S S; Schlitzer, Reiner; Sieger, Rainer; Skjelvan, Ingunn; Steinhoff, Tobias; Sullivan, Kevin; Sun, Heng; Sutton, Adrienne; Suzuki, Toru; Sweeney, Colm; Takahashi, Taro; Tjiputra, Jerry; Tsurushima, Nobuo; van Heuven, Steven; Vandemark, Doug; Vlahos, Penny; Wallace, Douglas WR; Wanninkhof, Rik; Watson, Andrew J (2014): An update to the Surface Ocean CO2 Atlas (SOCAT version 2). Earth System Science Data, 6(1), 69-90, https://doi.org/10.5194/essd-6-69-2014
    Publication Date: 2024-02-17
    Description: The Surface Ocean CO2 Atlas (SOCAT), an activity of the international marine carbon research community, provides access to synthesis and gridded fCO2 (fugacity of carbon dioxide) products for the surface oceans. Version 2 of SOCAT is an update of the previous release (version 1) with more data (increased from 6.3 million to 10.1 million surface water fCO2 values) and extended data coverage (from 1968-2007 to 1968-2011). The quality control criteria, while identical in both versions, have been applied more strictly in version 2 than in version 1. The SOCAT website (http://www.socat.info/) has links to quality control comments, metadata, individual data set files, and synthesis and gridded data products. Interactive online tools allow visitors to explore the richness of the data. Applications of SOCAT include process studies, quantification of the ocean carbon sink and its spatial, seasonal, year-to-year and longerterm variation, as well as initialisation or validation of ocean carbon models and coupled climate-carbon models.
    Keywords: SOCAT; Surface Ocean CO2 Atlas Project
    Type: Dataset
    Format: application/zip, 2669 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bakker, Dorothee C E; Pfeil, Benjamin; Landa, Camilla S; Metzl, Nicolas; O'Brien, Kevin M; Olsen, Are; Smith, Karl; Cosca, Catherine E; Harasawa, Sumiko; Jones, Steve D; Nakaoka, Shin-Ichiro; Nojiri, Yukihiro; Schuster, Ute; Steinhoff, Tobias; Sweeney, Colm; Takahashi, Taro; Tilbrook, Bronte; Wada, Chisato; Wanninkhof, Rik; Alin, Simone R; Balestrini, Carlos F; Barbero, Leticia; Bates, Nicolas R; Bianchi, Alejandro A; Bonou, Frédéric Kpédonou; Boutin, Jacqueline; Bozec, Yann; Burger, Eugene; Cai, Wei-Jun; Castle, Robert D; Chen, Liqi; Chierici, Melissa; Currie, Kim I; Evans, Wiley; Featherstone, Charles; Feely, Richard A; Fransson, Agneta; Goyet, Catherine; Greenwood, Naomi; Gregor, Luke; Hankin, Steven; Hardman-Mountford, Nicolas J; Harlay, Jérôme; Hauck, Judith; Hoppema, Mario; Humphreys, Matthew P; Hunt, Christopher W; Huss, Betty; Ibánhez, J Severino P; Johannessen, Truls; Keeling, Ralph F; Kitidis, Vassilis; Körtzinger, Arne; Kozyr, Alexander; Krasakopoulou, Evangelia; Kuwata, Akira; Landschützer, Peter; Lauvset, Siv K; Lefèvre, Nathalie; Lo Monaco, Claire; Manke, Ansley; Mathis, Jeremy T; Merlivat, Liliane; Millero, Frank J; Monteiro, Pedro M S; Munro, David R; Murata, Akihiko; Newberger, Timothy; Omar, Abdirahman M; Ono, Tsuneo; Paterson, Kristina; Pearce, David J; Pierrot, Denis; Robbins, Lisa L; Saito, Shu; Salisbury, Joe; Schlitzer, Reiner; Schneider, Bernd; Schweitzer, Roland; Sieger, Rainer; Skjelvan, Ingunn; Sullivan, Kevin; Sutherland, Stewart C; Sutton, Adrienne; Tadokoro, Kazuaki; Telszewski, Maciej; Tuma, Matthias; van Heuven, Steven; Vandemark, Doug; Ward, Brian; Watson, Andrew J; Xu, Suqing (2016): A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth System Science Data, 8(2), 383-413, https://doi.org/10.5194/essd-8-383-2016
    Publication Date: 2024-02-17
    Description: The Surface Ocean CO2 Atlas (SOCAT) is a synthesis of quality-controlled fCO2 (fugacity of carbon dioxide) values for the global surface oceans and coastal seas with regular updates. Version 3 of SOCAT has 14.5 million fCO2 values from 3646 data sets covering the years 1957 to 2014. This latest version has an additional 4.4 million fCO2 values relative to version 2 and extends the record from 2011 to 2014. Version 3 also significantly increases the data availability for 2005 to 2013. SOCAT has an average of approximately 1.2 million surface water fCO2 values per year for the years 2006 to 2012. Quality and documentation of the data has improved. A new feature is the data set quality control (QC) flag of E for data from alternative sensors and platforms. The accuracy of surface water fCO2 has been defined for all data set QC flags. Automated range checking has been carried out for all data sets during their upload into SOCAT. The upgrade of the interactive Data Set Viewer allows better interrogation of the SOCAT data collection and rapid creation of high-quality figures for scientific presentations. Automated data upload has been launched for version 4 and will enable more frequent SOCAT releases in the future. High-profile scientific applications of SOCAT include quantification of the ocean sink for atmospheric carbon dioxide and its long-term variation, detection of ocean acidification, as well as evaluation of coupled-climate and ocean-only biogeochemical models. Users of SOCAT data products are urged to acknowledge the contribution of data providers, as stated in the SOCAT Fair Data Use Statement. This living data publication documents changes in the methods and data sets used in this new version of the SOCAT data collection compared with previous publications of this data collection (Pfeil et al., 2013; Sabine et al., 2013; Bakker et al., 2014).
    Keywords: SOCAT; Surface Ocean CO2 Atlas Project
    Type: Dataset
    Format: application/zip, 3657 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-17
    Description: The Surface Ocean CO2 Atlas (SOCAT) is a synthesis activity by the international marine carbon research community (〉100 contributors). SOCAT version 4 has 18.5 million quality-controlled, surface ocean fCO2 (fugacity of carbon dioxide) observations with an accuracy of better than 5 µatm from 1957 to 2015 for the global oceans and coastal seas. Automation of data upload and initial data checks speeds up data submission and allows annual releases of SOCAT from version 4 onwards. SOCAT enables quantification of the ocean carbon sink and ocean acidification and evaluation of ocean biogeochemical models. SOCAT represents a milestone in research coordination, data access, biogeochemical and climate research and in informing policy.
    Keywords: SOCAT; Surface Ocean CO2 Atlas Project
    Type: Dataset
    Format: application/zip, 1265 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bakker, Dorothee C E; O'Brien, Kevin M; Pfeil, Benjamin; Currie, Kim I; Kozyr, Alexander; Landa, Camilla S; Lauvset, Siv K; Metzl, Nicolas; Nakaoka, Shin-Ichiro; Nojiri, Yukihiro; Nonaka, Isao; Olsen, Are; Omar, Abdirahman M; Pierrot, Denis; Saito, Shu; Smith, Karl; Sutton, Adrienne; Sullivan, Kevin; Tilbrook, Bronte; Wanninkhof, Rik; Akl, John; Alin, Simone R; Barbero, Leticia; Barrera, Kira E; Beaumont, Laurence; Becker, Meike; Bernard, Christophe; Bott, Randy; Byrne, Robert; Cai, Wei-Jun; Cosca, Catherine E; Cross, Jessica; Daly, Kendra L; Danguy, Théo; De Carlo, Eric Heinen; Dietrich, Colin; Feely, Richard A; Fiedler, Björn; Glockzin, Michael; Gove, Matthew D; Goyet, Catherine; Guillot, Antoine; Hales, Burke; Hartman, Sue E; Herndon, Julian; Hoppema, Mario; Humphreys, Matthew P; Hunt, Christopher W; Huss, Betty; Hydes, David; Ibánhez, J Severino P; Ishii, Masao; Johannessen, Truls; Jones, Steve D; Kitidis, Vassilis; Knorr, Paul O; Körtzinger, Arne; Kosugi, Naohiro; Lee, Charity M; Lefèvre, Nathalie; Lo Monaco, Claire; Liu, Xuewu; Maenner, Stacy M; Manke, Ansley; Manzello, Derek P; Mathis, Jeremy T; Mickett, John; Millero, Frank J; Monacci, Natalie; Monteiro, Pedro; Morell, Julio; Munro, David R; Musielewicz, Sylvia; Neill, Craig; Newberger, Timothy; Newton, Jan; Noakes, Scott; Noh, Jae Hoon; Ohman, Mark; Ólafsdóttir, Sólveig Rósa; Ólafsson, Jón; Osborne, John; Padín, Xose Antonio; Rehder, Gregor; Reimer, Janet J; Robbins, Lisa L; Rutgersson, Anna; Sabine, Christopher L; Salisbury, Joe; Sasano, Daisuke; Schlitzer, Reiner; Schuster, Ute; Send, Uwe; Sieger, Rainer; Skjelvan, Ingunn; Steinhoff, Tobias; Sutherland, Stewart C; Sweeney, Colm; Takahashi, Taro; Telszewski, Maciej; Vandemark, Doug; van Heuven, Steven; Wallace, Douglas WR; Woosley, Ryan J; Wynn, Jonathan G; Yates, Kimberly Kaye (in prep.): Version 5 of the Surface Ocean CO2 Atlas (SOCAT).
    Publication Date: 2024-02-17
    Description: The Surface Ocean CO2 Atlas (SOCAT) is a synthesis activity by the international marine carbon research community (〉100 contributors). SOCAT version 5 has 21.5 million quality-controlled, surface ocean fCO2 (fugacity of carbon dioxide) observations from 1957 to 2017 for the global oceans and coastal seas. Calibrated sensor data are also available. Automation allows annual, public releases. SOCAT data is discoverable, accessible and citable. SOCAT enables quantification of the ocean carbon sink and ocean acidification and evaluation of ocean biogeochemical models. SOCAT, which celebrates its 10th anniversary in 2017, represents a milestone in biogeochemical and climate research and in informing policy.
    Keywords: SOCAT; Surface Ocean CO2 Atlas Project
    Type: Dataset
    Format: application/zip, 823 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...