ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-05-09
    Description: Dietary deficiencies of zinc and iron are a substantial global public health problem. An estimated two billion people suffer these deficiencies, causing a loss of 63 million life-years annually. Most of these people depend on C3 grains and legumes as their primary dietary source of zinc and iron. Here we report that C3 grains and legumes have lower concentrations of zinc and iron when grown under field conditions at the elevated atmospheric CO2 concentration predicted for the middle of this century. C3 crops other than legumes also have lower concentrations of protein, whereas C4 crops seem to be less affected. Differences between cultivars of a single crop suggest that breeding for decreased sensitivity to atmospheric CO2 concentration could partly address these new challenges to global health.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Myers, Samuel S -- Zanobetti, Antonella -- Kloog, Itai -- Huybers, Peter -- Leakey, Andrew D B -- Bloom, Arnold J -- Carlisle, Eli -- Dietterich, Lee H -- Fitzgerald, Glenn -- Hasegawa, Toshihiro -- Holbrook, N Michele -- Nelson, Randall L -- Ottman, Michael J -- Raboy, Victor -- Sakai, Hidemitsu -- Sartor, Karla A -- Schwartz, Joel -- Seneweera, Saman -- Tausz, Michael -- Usui, Yasuhiro -- 8UL1TR000170-0/TR/NCATS NIH HHS/ -- P30 ES000002/ES/NIEHS NIH HHS/ -- UL1 TR000170/TR/NCATS NIH HHS/ -- England -- Nature. 2014 Jun 5;510(7503):139-42. doi: 10.1038/nature13179. Epub 2014 May 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, 02215, USA [2] Harvard University Center for the Environment, Cambridge, Massachusetts 02138, USA. ; Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, 02215, USA. ; The Department of Geography and Environmental Development, Ben-Gurion University of the Negev, PO Box 653, Beer Sheva, Israel. ; Department of Earth and Planetary Science, Harvard University, Cambridge, Massachusetts 02138, USA. ; Department of Plant Biology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA. ; Department of Plant Sciences, University of California at Davis, Davis, California 95616, USA. ; University of Pennsylvania, Department of Biology, Philadelphia, Pennsylvania 19104, USA. ; Department of Environment and Primary Industries, Horsham, Victoria 3001, Australia. ; National Institute for Agro-Environmental Sciences, Tsukuba, Ibaraki, 305-8604, Japan. ; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; United States Department of Agriculture Agricultural Research Service, Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801, USA. ; School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA. ; United States Department of Agriculture Agricultural Research Service, Aberdeen, Idaho 83210, USA. ; The Nature Conservancy, Santa Fe, New Mexico 87544, USA. ; Department of Agriculture and Food Systems, Melbourne School of Land and Environment, The University of Melbourne, Creswick, Victoria 3363, Australia. ; Department of Forest and Ecosystem Science, Melbourne School of Land and Environment, The University of Melbourne, Creswick, Victoria 3363, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24805231" target="_blank"〉PubMed〈/a〉
    Keywords: Air/analysis ; Atmosphere/chemistry ; Australia ; Breeding ; Carbon Dioxide/analysis/*pharmacology ; Crops, Agricultural/*chemistry/*drug effects/metabolism ; Diet ; Edible Grain/chemistry/drug effects/metabolism ; Fabaceae/chemistry/drug effects/metabolism ; Global Health/trends ; Humans ; Iron/analysis/deficiency/metabolism ; Japan ; *Nutritional Status ; Nutritive Value/*drug effects ; Photosynthesis/drug effects ; Phytic Acid/analysis/metabolism ; Public Health/*trends ; United States ; Zinc/analysis/deficiency/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-09-20
    Description: Author(s): K. H. Jensen, K. Berg-Sørensen, H. Bruus, N. M. Holbrook, J. Liesche, A. Schulz, M. A. Zwieniecki, and T. Bohr Green plants harvest the energy of the Sun in the leaves by converting light energy into chemical energy in the bonds of sugar molecules, using water from the soil and carbon dioxide from the air. This review provides an overview of the vascular anatomy of plants and the physical models that describe the long-distance transport of water and minerals from root to leaf, and, in particular, of sugars from the leaves to the entire body of the plant sustaining growth and communication throughout even the tallest tree. [Rev. Mod. Phys. 88, 035007] Published Fri Sep 16, 2016
    Keywords: Biological physics
    Print ISSN: 0034-6861
    Electronic ISSN: 1539-0756
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020
    Print ISSN: 2055-026X
    Electronic ISSN: 2055-0278
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 26 (2003), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The hydraulic conductance of the leaf lamina (Klamina) substantially constrains whole-plant water transport, but little is known of its association with leaf structure and function. Klamina was measured for sun and shade leaves of six woody temperate species growing in moist soil, and tested for correlation with the prevailing leaf irradiance, and with 22 other leaf traits. Klamina varied from 7.40 × 10−5 kg m−2 s−1 MPa−1 for Acer saccharum shade leaves to 2.89 × 10−4 kg m−2 s−1 MPa−1 for Vitis labrusca sun leaves. Tree sun leaves had 15–67% higher Klamina than shade leaves. Klamina was co-ordinated with traits associated with high water flux, including leaf irradiance, petiole hydraulic conductance, guard cell length, and stomatal pore area per lamina area. Klamina was also co-ordinated with lamina thickness, water storage capacitance, 1/mesophyll water transfer resistance, and, in five of the six species, with lamina perimeter/area. However, for the six species, Klamina was independent of inter-related leaf traits including leaf dry mass per area, density, modulus of elasticity, osmotic potential, and cuticular conductance. Klamina was thus co-ordinated with structural and functional traits relating to liquid-phase water transport and to maximum rates of gas exchange, but independent of other traits relating to drought tolerance and to aspects of carbon economy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 28 (2005), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Oxygen levels as low as 1–5% (gaseous mole fraction) occur in secondary xylem, but it is not known if there is a consistent pattern of decline in O2 from the cambium toward the pith, or whether parenchyma cells experience hypoxic conditions deep within the stem. We developed a system for repeated in situ measurement of O2 at different depths within stems of Acer rubrum, Fraxinus americana, Tsuga canadensis, and Quercus rubra. In summer during active transpiration, O2 declined from the cambium toward the heartwood boundary in F. americana, T. canadensis and Q. rubra, but remained constant in A. rubrum. Average sapwood O2 was about 10%, with the lowest values observed in the innermost sapwood around 3–5%. Before spring leaf flush, O2 content in the outer sapwood was reduced in Q. rubra and T. canadensis relative to summer, and was occasionally lower than in the inner sapwood. Sapwood respiration in T. canadensis was constant above 5% O2, but reduced by about 65% at 1% O2. In F. americana, sapwood respiration was constant above 10% O2 but reduced by 25% at 5% O2, and by 75% at 1% O2, the most extreme inhibition observed. However, when prolonged (72 h) exposure to 1%, 5% and 10% O2 was followed by re-equilibration to 10% O2, no inhibition was found. Given the minor (and reversible) effect of low O2 on parenchyma metabolism at levels common in the inner sapwood, it is unlikely that O2 content severely limits parenchyma respiration or leads to parenchyma cell death during sapwood senescence. Within-stem O2 levels may instead be most relevant to metabolism in the cambial zone and phloem, for which sapwood could serve as a significant source of O2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 27 (2004), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Diurnal patterns of hydraulic conductance of the leaf lamina (Kleaf) were monitored in a field-grown tropical tree species in an attempt to ascertain whether the dynamics of stomatal conductance (gs) and CO2 uptake (Aleaf) were associated with short-term changes in Kleaf. On days of high evaporative demand mid-day depression of Kleaf to between 40 and 50% of pre-dawn values was followed by a rapid recovery after 1500 h. Leaf water potential during the recovery stage was less than −1 MPa implying a refilling mechanism, or that loss of Kleaf was not linked to cavitation. Laboratory measurement of the response of Kleaf to Ψleaf confirmed that leaves in the field were operating at water potentials within the depressed region of the leaf ‘vulnerability curve’. Diurnal courses of Kleaf and Ψleaf predicted from measured transpiration, xylem water potential and the Kleaf vulnerability function, yielded good agreement with observed trends in both leaf parameters. Close correlation between depression of Kleaf, gs and Aleaf suggests that xylem dysfunction in the leaf may lead to mid-day depression of gas exchange in this species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 26 (2003), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: This study examined the linkage between xylem vulnerability, stomatal response to leaf water potential (ΨL), and loss of leaf turgor in eight species of seasonally dry tropical forest trees. In order to maximize the potential variation in these traits species that exhibit a range of leaf habits and phenologies were selected. It was found that in all species stomatal conductance was responsive to ΨL over a narrow range of water potentials, and that ΨL inducing 50% stomatal closure was correlated with both the ΨL inducing a 20% loss of xylem hydraulic conductivity and leaf water potential at turgor loss in all species. In contrast, there was no correlation between the water potential causing a 50% loss of conductivity in the stem xylem, and the water potential at stomatal closure (ΨSC) amongst species. It was concluded that although both leaf and xylem characters are correlated with the response of stomata to ΨL, there is considerable flexibility in this linkage. The range of responses is discussed in terms of the differing leaf-loss strategies exhibited by these species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 24 (2001), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: We investigated the hydraulic properties in relation to soil moisture, leaf habit, and phylogenetic lineage of 17 species of oaks (Quercus) that occur sympatrically in northern central Florida (USA). Leaf area per shoot increased and Huber values (ratio of sapwood area to leaf area) decreased with increasing soil moisture of species’ habitats. As a result, maximum hydraulic conductance and maximum transpiration were positively correlated with mean soil moisture when calculated on a sapwood area basis, but not when calculated on a leaf area basis. This reveals the important role that changes in allometry among closely related species can play in co-ordinating water transport capacity with soil water availability. There were significant differences in specific conductivity between species, but these differences were not explained by leaf habit or by evolutionary lineage. However, white oaks had significantly smaller average vessel diameters than red oaks or live oaks. Due to their lower Huber values, maximum leaf specific conductivity (KL) was higher in evergreen species than in deciduous species and higher in live oaks than in red oaks or white oaks. There were large differences between species and between evolutionary lineages in freeze–thaw-induced embolism. Deciduous species, on average, showed greater vulnerability to freezing than evergreen species. This result is strongly influenced by evolutionary lineage. Specifically, white oaks, which are all deciduous, had significantly higher vulnerability to freezing than live oaks (all evergreen) and red oaks, which include both evergreen and deciduous species. These results highlight the importance of taking evolutionary lineage into account in comparative physiological studies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 23 (2000), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: For decades, botanists have considered Winteraceae as the least modified descendents of the first angiosperms primarily because this group lacks xylem vessels. Because of a presumed high resistance of a tracheid-based vascular system to water transport, Winteraceae have been viewed as disadvantaged relative to vessel-bearing angiosperms. Here we show that in a Costa Rican cloud forest, stem hydraulic properties, sapwood area- and leaf area-specific hydraulic conductivities of Drimys granadensis L. (Winteraceae) are similar to several co-occurring angiosperm tree species with vessels. In addition, D. granadensis had realized midday transpiration rates comparable to most vessel-bearing trees. Surprisingly, we found that D. granadensis transpired more water at night than during the day, with actual water loss being correlated with wind speed. The failure of stomata to shut at night may be related to the occlusion of stomatal pores by cutin and wax. Our measurements do not support the view that absence of xylem vessels imposes limitations on water transport above those for other vesselled plants in the same environment. This, in turn, suggests that a putative return to a tracheid-based xylem in Winteraceae may not have required a significant loss of hydraulic performance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 21 (1998), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Stem water storage capacity and diurnal patterns of water use were studied in five canopy trees of a seasonal tropical forest in Panama. Sap flow was measured simultaneously at the top and at the base of each tree using constant energy input thermal probes inserted in the sapwood. The daily stem storage capacity was calculated by comparing the diurnal patterns of basal and crown sap flow. The amount of water withdrawn from storage and subsequently replaced daily ranged from 4 kg d–1 in a 0·20-m-diameter individual of Cecropia longipes to 54 kg d–1 in a 1·02-m-diameter individual of Anacardium excelsum, representing 9–15% of the total daily water loss, respectively. Ficus insipida, Luehea seemannii and Spondias mombin had intermediate diurnal water storage capacities. Trees with greater storage capacity maintained maximum rates of transpiration for a substantially longer fraction of the day than trees with smaller water storage capacity. All five trees conformed to a common linear relationship between diurnal storage capacity and basal sapwood area, suggesting that this relationship was species-independent and size-specific for trees at the study site. According to this relationship there was an increment of 10 kg of diurnal water storage capacity for every 0·1 m2 increase in basal sapwood area. The diurnal withdrawal of water from, and refill of, internal stores was a dynamic process, tightly coupled to fluctuations in environmental conditions. The variations in basal and crown sap flow were more synchronized after 1100 h when internal reserves were mostly depleted. Stem water storage may partially compensate for increases in axial hydraulic resistance with tree size and thus play an important role in regulating the water status of leaves exposed to the large diurnal variations in evaporative demand that occur in the upper canopy of seasonal lowland tropical forests.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...