ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 63 (1981), S. 13-24 
    ISSN: 1432-1424
    Keywords: Acidification ; renal tubule ; hydrogen ion secretion ; buffer permeability ; anion transport ; titrat-able acid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary The acidification kinetics of artificial solutions containing buffers of different permeancy were studied in rat proximal tubules by means of stationary microperfusion techniques. Luminal pH changes were measured by antimony microelectrodes and used to calculate net rates of acidification and the approach to steady-state pH levels. For most buffer species, tracer efflux out of the lumen was compared with changes in buffer concentration as derived from calculations based on the Henderson Hasselbalch equation. Steady-state luminal pH was similar for most buffer systems studied. However, secretory hydrogen ion fluxes into the lumen were significantly higher for permeant than for less permeant buffers. The most likely explanation is that permeant buffers behave as “open” systems maintaining constant low diffusible acid levels in the lumen, whereas impermeant buffers behave as “closed” systems in which nonionized acid levels are maintained at higher levels. A behavior consistent with this thesis was directly demonstrated for glycodiazine and, to a lesser degree, for DMO. In contrast, phosphate and creatinine behave like buffers in a “closed” cystem. Characteristics of proximal tubular acidification, of buffer reabsorption, and the effect thereupon of carbonic anhydrase inhibitors are satisfactorily explained by an essential role of (1) hydrogen ion secretion, (2) pK differences, and (3) different permeance of the non-ionized buffer species. However, specific transport mechanisms may, in addition, also contribute to differences in transepithelial buffer movement.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Medical & biological engineering & computing 17 (1979), S. 330-332 
    ISSN: 1741-0444
    Keywords: Online computer measurements ; Sodium transport ; Split-droplet technique ; Volume flow
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract A method is described that permits the recording of volume changes of fluid droplets injected into the cortical tubules of a rat kidney. The length of the fluid column is measured by means of a filar ocular micrometer adapted to a 10-turn potentiometer, which converts the movement of a thin hair in the optical field into a voltage change. The latter can be recorded on a laboratory recorder, and, by means of an analogue-digital convertor, introduced into a computing system that is programmed to analyse the data automatically.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...