Skip to main content
Log in

Role of luminal buffers in renal tubular acidification

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The acidification kinetics of artificial solutions containing buffers of different permeancy were studied in rat proximal tubules by means of stationary microperfusion techniques. Luminal pH changes were measured by antimony microelectrodes and used to calculate net rates of acidification and the approach to steady-state pH levels. For most buffer species, tracer efflux out of the lumen was compared with changes in buffer concentration as derived from calculations based on the Henderson Hasselbalch equation. Steady-state luminal pH was similar for most buffer systems studied. However, secretory hydrogen ion fluxes into the lumen were significantly higher for permeant than for less permeant buffers. The most likely explanation is that permeant buffers behave as “open” systems maintaining constant low diffusible acid levels in the lumen, whereas impermeant buffers behave as “closed” systems in which nonionized acid levels are maintained at higher levels. A behavior consistent with this thesis was directly demonstrated for glycodiazine and, to a lesser degree, for DMO. In contrast, phosphate and creatinine behave like buffers in a “closed” cystem. Characteristics of proximal tubular acidification, of buffer reabsorption, and the effect thereupon of carbonic anhydrase inhibitors are satisfactorily explained by an essential role of (1) hydrogen ion secretion, (2) pK differences, and (3) different permeance of the non-ionized buffer species. However, specific transport mechanisms may, in addition, also contribute to differences in transepithelial buffer movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Awqati, Q. 1978. H+ transport in urinary epithelia.Am. J. Physiol. 235:F77-F88

    PubMed  Google Scholar 

  • Brodie, B.B., Kurz, H., Schanker, L.S. 1960. The importance of dissociation constant and lipid-solubility in influencing the passage of drugs into the cerebrospinal fluid.J. Pharmacol. Exp. Ther. 130:20–25

    PubMed  Google Scholar 

  • Butler, T.C. 1953. Quantitative studies of the demethylation of trimethadione (tridione).J. Pharmacol. Exp. Ther. 108:11–17

    PubMed  Google Scholar 

  • Cassola, A.C., Giebisch, G., Malnic, G. 1977. Mechanisms and components of renal tubular acidification.J. Physiol. (London) 267:601–624

    Google Scholar 

  • Cassola, A.C., Malnic, G. 1977. Phosphate transfer and tubular pH during renal stopped-flow microperfusion in the rat.Pfluegers Arch. 367:249–255

    Article  Google Scholar 

  • Cogan, M.G., Maddox, D.A., Warnock, D.G., Lin, E.T., Rector, F.C. 1979. The effect of acetazolamide on bicarbonate reabsorption in the proximal tubule of the rat.Am. J. Physiol. 237:F447–454

    PubMed  Google Scholar 

  • De Mello, G.B., Lopes, A.G., Malnic, G. 1976. Conductances, diffusion and streaming potentials in the rat proximal tubule.J. Physiol. (London) 260:553–567

    Google Scholar 

  • Dennis, V.W., Woodhall, P.B., Robinson, R.R. 1976. Characteristics of phosphate transport in isolated proximal tubule.Am. J. Physiol. 231:979–985

    PubMed  Google Scholar 

  • Giebisch, G., Malnic, G., Mello, G.B. de, Mello Aires, M. de 1977. Kinetics of luminal acidification in cortical tubules of the rat kidney.J. Physiol. (London) 267:571–599

    Google Scholar 

  • Green, R., Giebisch, G. 1975. Some ionic requirements of proximal tubular sodium transport. I. The role of bicarbonate and chloride.Am. J. Physiol. 229:1216–1226

    PubMed  Google Scholar 

  • Hodgman, C.D. (editor). 1961. Handbook of Chemistry and Physics. p. 544. Chemical Rubber Publ. Co., Cleveland

    Google Scholar 

  • Hogben, C.A.M., Tocco, D.J., Brodie, B.B., Schanker, L.S. 1959. On the mechanism of intestinal absorption of drugs.J. Pharmacol. Exp. Ther. 125:275–287

    PubMed  Google Scholar 

  • Jackson, M.J., Williamson, A.M., Dombrowski, W.A., Garner, D.E. 1978. Intestinal transport of weak electrolytes. Determinants of influx at the luminal surface.J. Gen. Physiol. 71:301–327

    Article  PubMed  Google Scholar 

  • Kramer, M., Hecht, G., Langecker, H., Harwart, A., Richter, K.D., Gluxhuber, C. 1964. Pharmakologie des 2-Benzolsulfonamido-5(methoxy-athoxy)-pyrimidins (Glycodiazin), einer neuen blutzuckersenkenden Verbindung.Arzneimittel Forsch. 14:377–385

    Google Scholar 

  • Lang, F., Greger, R., Marchand, G.R., Knox, F.G. 1977. Stationary microperfusion study of phosphate reabsorption in proximal and distal nephron segments.Pfluegers Arch. 368:45–48

    Article  Google Scholar 

  • Malnic, G., Cassola, A.C. 1977. Effect of current-induced transepithelial PD changes on H ion movements in renal tubules.Coll. INSERM 67:53–70

    Google Scholar 

  • Malnic, G., Giebisch, G. 1979. Cellular aspects of renal tubular acidification. In: Membrane Transport in Biology. Transport Organs, Vol. 4, pp. 299–355. Ch. 6. G. Giebisch, editor. Springer, Berlin

    Google Scholar 

  • Malnic, G., Mello Aires, M. de 1971. Kinetic study of bicarbonate reabsorption in proximal tubule of the rat.Am. J. Physiol. 220:1759–1767

    PubMed  Google Scholar 

  • Malnic, G., Mello Aires, M. de, Mello, G.B. de, Giebisch, G. 1972. Acidification of phosphate buffer in cortical tubules of rat kidney.Pfluegers Arch. 331:275–278

    Article  Google Scholar 

  • Malnic, G., Mello Aires, M. de, Giebisch, G. 1972. Micropuncture study of renal tubular hydrogen ion transport in the rat.Am. J. Physiol. 222:147–158

    PubMed  Google Scholar 

  • Maren, T.H. 1978. Carbon dioxide equilibria in the kidney: The problems of elevated carbon dioxide tension, delayed hydration and disequilibrium pH.Kidney Int. 14:395–405

    PubMed  Google Scholar 

  • Mello Aires, M. de, Malnic, G. 1975. Peritubular pH and pCO2 in renal tubular acidification.Am. J. Physiol. 228:1766–1774

    PubMed  Google Scholar 

  • Nahas, G.G. 1962. The pharmacology of tris(hydroxy-methyl) aminomethane (THAM).Pharmacol. Rev. 14:447–472

    PubMed  Google Scholar 

  • Rector, F.C. 1973. Acidification of the urine.In: Handbook of Physiology, Sect. 8, Renal Physiology. J. Orloff and R.W. Berliner, editors. p. 431–454. American Physiology Society, Washington

    Google Scholar 

  • Schafer, A., Andreoli, T.E. 1972. Cellular costraints to diffusion. The effect of antidiuretic hormone on water flows in isolated mammlaian collecting tubules.J. Clin. Invest. 51:1264–1278

    PubMed  Google Scholar 

  • Ullrich, K.J., Rumrich, G., Baumann, K. 1975. Renal proximal tubular buffer (glycodiazine) transport. Inhomogeneity of local transport rate, dependence on sodium, effect of inhibitors and chronic adaptation.Pfluegers Arch. 357:149–163

    Article  Google Scholar 

  • Warnock, D.G., Burg, M.B. 1977. Urinary acidification: CO2 transport by the rabbit proximal straight tubule.Am. J. Physiol. 232:F20-F25

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa Silva, V.L., Campiglia, S.S., de Mello Aires, M. et al. Role of luminal buffers in renal tubular acidification. J. Membrain Biol. 63, 13–24 (1981). https://doi.org/10.1007/BF01969441

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01969441

Key words

Navigation