ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 11 (1973), S. 637-648 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Thermal degradation of model biscarbamates, polyurethanes and poly(urethane-ureas) has been investigated by pyrolysis at atmospheric pressure. The biscarbamates were prepared from phenyl, benzyl, and cyclohexyl isocyanate and ethylene glycol. The polyurethanes and poly(urethane-ureas) were prepared from tolylene diisocyanate (TDI), xylylene diisocyanate (XDI), and 4,4′-dicyclohexylmethane diisocyanate (H12-MDI) and poly(oxyethylene glycols) of various molecular weights. Rate constants for thermal degradation were obtained by measuring carbon dioxide evolution. The thermal degradation of all materials showed that the stability increased in the following manner: aromatic 〈 aralkyl 〈 cycloaliphatic. The separation and identification of the products of the thermal degradation gave an insight into the mechanisms involved in the pyrolysis of aromatic, aralkyl, and cycloaliphatic biscarbamates and the influence of temperature on these mechanisms.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 11 (1973), S. 1683-1690 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Alkaline hydrolysis of model carbamates, polyurethanes, and poly(urethane-ureas) has been investigated. The model carbamates were based upon phenyl, benzyl, and cyclohexyl isocyanates. The polyurethanes and poly(urethane-ureas) were prepared from tolylene diisocyanate (TDI), xylylene diisocyanate (XDI), and 4,4′-dicyclohexylmethane diisocyanate (H12MDI) and a poly(oxyethylene)glycol of 6000 molecular weight. Pseudo-first-order rate constants of hydrolysis were obtained in aqueous pyridine solution at 110°C, and second-order rate constants were obtained in aqueous KOH solution for the model biscarbamates. Pseudo-first-order rate constants of hydrolysis were obtained in alcoholic KOH solution for the polyurethanes and poly(urethane-ureas). The hydrolysis of the model carbamates showed that the stability increased in the following manner: phenyl 〈 benzyl 〈 cyclohexyl. The pseudo-first-order rate constants were dependent upon the pKb of the corresponding amines. The hydrolysis of the polyurethanes and poly(urethane-ureas) showed that the stability increased in the following manner: aromatic 〈 aralkyl 〈 cycloaliphatic. It was shown that polyurethanes are more susceptible to alkaline hydrolysis than to acidic hydrolysis.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 27 (1982), S. 461-470 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: We describe here a relatively new analytical method1-3 for following the thermal reaction history of polymers by quantitatively detecting the evolution of gases and some volatiles by flowing-afterglow spectroscopy. The thermal and oxidative stability of common plastics in many industrial and defense applications is of wide interest. We have studied the evolution of moisture and carbon dioxide from Li2CO3/Orlon-filled diallyl phthalate (DAP) composites and have briefly examined the thermal stability of Estane 5703, a polyester-based thermoplastic polyurethane. The results of these preliminary studies have shown the utility of FLAG spectroscopy as a means toward our understanding polymer stability and lifetimes in specified environments. FLAG data, combined with differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) data, have extended our knowledge of Li2CO3/Orlon/DAP and Estane aging processes. The DAP composites evolve H2O and CO2 at near ambient temperatures, and we have described the kinetics of gas evolution and have attempted to describe the mechanism of thermal degradation. In the 25-120°C temperature range Estane 5703 evolves CO2 as a decomposition product and some adsorbed moisture.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science Part A-1: Polymer Chemistry 7 (1969), S. 3434-3436 
    ISSN: 0449-296X
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1983-05-01
    Print ISSN: 0021-9797
    Electronic ISSN: 1095-7103
    Topics: Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...