ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Mineralium deposita 35 (2000), S. 422-429 
    ISSN: 1432-1866
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Cu-sulphide ores at Carolusberg and East Okiep have Cu/Ni ratios of up to 80, an order of magnitude higher than most magmatic sulphide ores elsewhere. In contrast, Se/S ratios (500–1700 × 10−6) and PGE tenors (up to 5 ppm) of the sulphides are in the range of more typical magmatic sulphide ores. The observed metal patterns may be explained by a process of monosulphide solid solution (mss) fractionation of a magmatic sulphide melt at depth, but this model is currently considered unlikely, due to the paucity of refractory ores in the district. Assimilation of Cu-rich country rocks during ascent of the Koperberg magmas proved difficult to test with the available data, but this provides no explanation for the common high-grade metamorphic setting of similar ores elsewhere. A restitic origin of the pyroxenites appears to explain many of the observed ore features and is presently favoured here. Desulphidization of a primary magmatic sulphide ore could not have yielded the observed metal patterns and is therefore considered to be of relatively minor importance in ore genesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Mineralium deposita 31 (1996), S. 386-393 
    ISSN: 1432-1866
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Northwest of Pretoria, the UG2-Merensky Reef interval overlies a Critical Zone-Lower Zone sequence that contains numerous large blocks of floor material. Nevertheless, individual layers can be correlated with equivalent units at Crocodile River mine, the Rustenburg, Impala, Union, and Amandelbult sections. Concentrations of platinum-group elements in two borehole intersections of the UG2 chromitite are 4 ppm over 1.2 m and 2.4 ppm over 2.2 m. Therefore, bulk PGE levels appear to be only moderately lower than those at Western Platinum mine. This renders models explaining PGE enrichment by upward percolating melt or fluids problematic. The Merensky Reef, although containing sulphides, is only weakly mineralized with PGE (0.6 ppm). The UG2 pyroxenite is separated from the UG2 chromitite by a 15 m noritic layer. The introduction of feldspathic cumulates between two units that elsewhere directly overly each other may be explained by the more evolved composition of resident magma in those parts of the chamber distally located with regard to a major feeder zone at Union Section. It also suggests that the UG2 unit is a multiple rather than a single cyclic unit.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Meteorites provide a sample of Solar System bodies and so constrain the types of objects that have collided with Earth over time. Meteorites analysed to date, however, are unlikely to be representative of the entire population and it is also possible that changes in their nature have occurred ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Mineralogy and petrology 50 (1994), S. 245-258 
    ISSN: 1438-1168
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Description / Table of Contents: Zusammenfassung Aufgrund der hohen Reaktionsträgheit von Feldspat ist dessen Zonierung höchstwahrscheinlich primärer Natur. Einführende Untersuchungen über Zonierungsmuster in Kumulus-Plagioklas im Interval zwischen der UG2 Chromitit-Lage und dem Merensky-Reef zeigten, daß Postkumulus-Wachstum nur den äußeren Rand der einzelnen Körner kennzeichnet. Demzufolge wird angenommen, daß die hier beobachteten Korngrößen den ursprünglichen Kumulus-Korngrößen entsprechen. Eine Korrelation zwischen der Korngröße von Plagioklasen und deren Chemismus und Zonierungs-muster konnte etabliert werden: größere, komplex zonierte Plagioklase haben einen höheren Anorthit-Gehalt. Diese Beziehung erklärt sich aus der relativ niedrigen Dichte von Plagioklas, die ein gravitatives Absinken verhindert. Demzufolge wurden Korngröße und Zonierungsmuster der in Schwebe befindlichen Plagioklase von der Verweildaner innerhalb einer sich periodisch ernenernden Schmelze bestimmt. Ältere, Ca-reiche Plagioklase sind relativ groß und komplex zoniert, während feinere Korngrößen, die zusammen mit relativ primitiven (Mg-reichen) Orthopyroxenen auftreten, das Ergebnis partieller Assimilation sind. Regionale Unterschiede existieren insofern, als daß Plagioklas in der Nähe einer postulierten Magmen-Zufuhrzone im Bereich von Union Section grobkörniger ist als in den südöstlichen Bereichen des westlichen Bushveld Komplexes.
    Notes: Summary Due to the slow equilibration rate of feldspar, its zoning pattern is likely to be of primary origin. Initial studies of zoning patterns of cumulus feldspar within the interval between the UG2 chromitite and the Merensky Reef have shown postcumulus growth to affect only the outermost rims of grains. Therefore, present-day grain sizes of plagioclase are considered to resemble the original cumulus grain sizes. A correlation between grain size of plagioclase and its composition and zoning pattern has been established: larger, complexly zoned grains correlate with more calcic compositions. It is inferred that the residence time of neutrally buoyant plagioclases within a periodically replenished host liquid determined their size and zoning pattern. Older and more calcic grains are larger and more complexly zoned, whereas finer grain sizes, which are associated with relatively primitive (Mg-rich) orthopyroxenes, are the result of partial resorption of plagioclase. Grain sizes of plagioclase, furthermore, show regional variation: grains are larger in the vicinity of Union Section than in the southeastern parts of the Western Bushveld Complex, which is interpreted as a consequence of the increasing distance from a putative feeder zone located near Union Section.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Mineralium deposita 31 (1996), S. 386-393 
    ISSN: 1432-1866
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract.  Northwest of Pretoria, the UG2–Merensky Reef interval overlies a Critical Zone–Lower Zone sequence that contains numerous large blocks of floor material. Nevertheless, individual layers can be correlated with equivalent units at Crocodile River mine, the Rustenburg, Impala, Union, and Amandelbult sections. Concentrations of platinum-group elements in two borehole intersections of the UG2 chromitite are 4 ppm over 1.2 m and 2.4 ppm over 2.2 m. Therefore, bulk PGE levels appear to be only moderately lower than those at Western Platinum mine. This renders models explaining PGE enrichment by upward percolating melt or fluids problematic. The Merensky Reef, although containing sulphides, is only weakly mineralized with PGE (0.6 ppm). The UG2 pyroxenite is separated from the UG2 chromitite by a 15 m noritic layer. The introduction of feldspathic cumulates between two units that elsewhere directly overly each other may be explained by the more evolved composition of resident magma in those parts of the chamber distally located with regard to a major feeder zone at Union Section. It also suggests that the UG2 unit is a multiple rather than a single cyclic unit.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-05-20
    Description: The Talbot Sub-basin is one of several bimodal volcanic depositional centres of the Mesoproterozoic Bentley Basin in central Australia. It is dominated by rocks of rhyolitic composition and includes ignimbrites, some forming large to super-eruption size deposits. Ferroan, incompatible trace element enriched, A-type compositions, anhydrous mineralogy and clear evidence for local rheomorphism indicate high eruption temperatures, with apparent zircon-saturation temperatures suggesting crystallization at 〉900°C. Comagmatic basalt is of mantle origin with minor Proterozoic basement contamination. The rhyolites cover the same range of Nd isotope compositions ( Nd(1070) +1·24 to –0·96) and La/Nb ratios (1·2–2·1) as the basalts ( Nd(1070) +2·1 to –1·1: La/Nb 1·2–2·3) and are compositionally far removed from all older basement and country-rock components (average Nd(1070) = –4, La/Nb = 10). The rhyolites and basalts are cogenetic through a process probably involving both fractional crystallization of mafic magmas and partial melting of recently crystallized mafic rock in a lower crustal intraplate, extraction of dacitic magmas to a voluminous upper crustal chamber system, and separation of rhyolite by processes involving rejuvenation and cannibalization of earlier chamber material. More than 230 000 km 3 of parental basalt is required to form the 〉22 000 km 3 of preserved juvenile rhyolite in the Talbot Sub-basin alone, which represents one of the most voluminous known felsic juvenile additions to intracontinental crust. Zircon U–Pb age components are complex and distinct from those of basement and country rock and contain antecrystic components reflecting dissolution–regrowth processes during periodic rejuvenation of earlier-emplaced chamber material without any significant interaction with country rock. The overall duration of magmatism was 〉30 Myr but can be divided into between two and four separate intervals, each probably of a few hundred thousand years’ duration and each probably reflecting one of the distinct lithostratigraphic groups defined in the sub-basin. Neither the composition nor style of felsic and mafic volcanism changes in any significant way from one volcanic event to the next and the range of zircon U–Pb ages indicates that each period utilized and cannibalized the same magma chamber. This volcanism forms a component of the 1090–1040 Ma Giles Event in central Australia, associated with magma-dominated extension at the nexus of the cratonic elements of Proterozoic Australia. This event cannot be reasonably reconciled with any putative plume activity but rather reflects the 〉200 Myr legacy of enhanced crustal geotherms that followed the final cratonic amalgamation of central Australia.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-10-05
    Description: Komatiites occur in many Archaean and Proterozoic greenstone belts metamorphosed to greenschist or upper amphibolite facies conditions. However, komatiites have so far not been reported from high-grade metamorphic environments (upper granulite facies conditions). Here we report the occurrence of Mg-, Cr-and Ni-rich ultramafic rocks (26 to 31% MgO, 2800 to 3800 ppm Cr, 1400 to 1800 ppm Ni) with unfractionated PGE patterns (8.15 to 12.36 ppb Pt, 6.17 to 13.49 ppb Pd, Pd/Ir ~2 to 6) in the high-grade polymetamorphic Central Zone of the Limpopo Belt, South Africa. The composition of the rocks overlaps with that of Al-undepleted (Munro-type) komatiites from elsewhere, except that the Central Zone samples are markedly enriched in highly incompatible trace elements and show negative Nb anomalies. Based on these data, we interpret the rocks to represent contaminated komatiites of Archaean age – the first such manifestation in the Limpopo Belt and in a high to ultra-high grade (≥900°C, 10 kbar) metamorphic environment.
    Print ISSN: 1012-0750
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-07-16
    Description: The petrogenesis of sulphide ores in the O’okiep district has remained controversial. Based mainly on the concentration of chalcophile metals (PGE, Cu, Ni), it is proposed that the sulphides segregated from a basaltic magma generated during melting of sub-continental lithospheric mantle. Sulphide saturation of the magma was delayed due to relatively high f O 2 until crustal contamination occurred during the advanced stages of differentiation. The immiscible sulphide melt was entrained and fractionated in dynamic magma conduits. Sulphides enriched in monosulphide solid solution (mss) component precipitated at depth in the Kliprand area of southern Namaqualand to form the Hondekloof deposits, whereas the O’okiep ores crystallised at shallower levels from highly fractionated residual sulphide liquids enriched in intermediate solid solution (iss). Sulphides of intermediate composition occur at Ezelsfontein. In the context of this model, the O’okiep intrusions could represent the proximal magmatic members of an IOCG suite of deposits, raising the prospect for additional IOCG deposits elsewhere in southern Africa. The model also predicts an enhanced potential at O’okiep for undiscovered Ni sulphide ores at depth.
    Print ISSN: 1012-0750
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-06-04
    Description: The Kunene Complex of Namibia-Angola is one of the largest anorthosite massifs on Earth (up to 18,000 km 2 ), consisting of several distinct anorthosite and leucotroctolite intrusions. The Namibian portion of the Kunene Complex measures ~80 x 50 km, ~4,000 km 2 , and is dominated by the Zebra Mountain lobe, a ~16-km-thick dome-like mass of interlayered, relatively unaltered dark leucotroctolite with relatively altered, "white," anorthosite. Past studies and the present work have found evidence for intrusion of two distinct phases of dark leucotroctolite into the white anorthosite, namely a relatively early, deformed, phase dated at 1363 ± 17 Ma (U-Pb in baddelyite), and a relatively later and undeformed phase whose absolute age remains unknown. The Kunene leucotroctolites are among the least evolved troctolites known from anorthosite complexes, with olivine containing 59 to 77 mol % forsterite and up to 1,700 ppm Ni, and plagioclase containing 56 to 69 mol % anorthosite. Our isotope data from the troctolites indicate a relatively small crustal component ( 18 O, ~5.3–7.3; 34 S, 0.5–1; and Nd T , 0.9–1.8), whereas Nd and oxygen isotope data from the white anorthosites, published by other workers, showed a slightly larger crustal component (e.g., Nd T as low as –3; 18 O up to 7.5). In the periphery of the Kunene Complex are several, relatively small (〈10 km 2 ), mafic-ultramafic intrusions comprising peridotite, pyroxenite, gabbro, troctolite, and anorthosite. Some of these bodies are Ni-Cu-PGE mineralized, including the Ohamaremba troctolite, the Oncocua pyroxenite, and the Ombuku peridotite-gabbronorite. The latter additionally contains a massive chromitite layer. A new U-Pb baddelyite age of 1220 ± 15 Ma for Ohamaremba indicates that the latter postdates the main Kunene Complex by ~140 Ma. The relative enrichment in MgO, Cr, and Ni, and the O, Nd, and S isotope characteristics of Kunene magmatism suggest that the primary magmas were predominantly mantle-derived picrites or basalts. The massif-type anorthosites formed through ascent of feldspathic slurries followed by downward draining of residual liquid. Subsequent magma pulses formed troctolitic sills within the anorthosite plutons and mafic-ultramafic satellite intrusions in the periphery of the anorthosites. The recurring nature of Kunene mafic-ultramafic magmatism results from several successive mantle upwellings. Partial mantle melts ascended through reactivated translithospheric lineaments along the southern margin of the Congo craton.
    Print ISSN: 0361-0128
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-11-10
    Description: The late Mesoproterozoic Giles Complex of the West Musgrave province hosts one of the largest concentrations of mafic-ultramafic layered intrusions on Earth. Therefore, the area is highly prospective for hosting significant Ni-Cu and platinum-group element (PGE) mineralization, especially following the discovery of a large magmatic sulfide deposit at Nebo-Babel in 2000. More recently, a significant occurrence of massive to disseminated sulfide mineralization reaching up to 0.62 wt % Cu, 0.47 wt % Ni, and 1 ppm Pt + Pd was identified at the Manchego prospect. The magmatic sulfide mineralization at Manchego is hosted by a range of gabbronoritic rock types situated below a linear magnetic anomaly interpreted to be a magnetite layer belonging to the layered mafic-ultramafic Jameson Range intrusion, which predates the Manchego intrusion. The principal ore minerals comprise massive to disseminated pyrrhotite, chalcopyrite, pentlandite, magnetite, and ilmenite. The presence of several geochemically distinct gabbronoritic lithotypes and an abundance of xenoliths strongly indicate a dynamic magmatic plumbing system, such as a conduit-type environment. Whole-rock samples of sulfide-rich gabbronoritic lithologies have 34 S values ranging from –11.8 to –8.4, which clearly demonstrates the addition of crustal sulfur at Manchego and therefore the availability of crustal sulfur in the West Musgrave province. In comparison to Nebo-Babel, the lithologies intersected at Manchego geochemically resemble the high Ti basaltic NB-4 dikes described by Godel et al. (2011) , which are compositionally distinct from the proposed parental magma for the Nebo-Babel intrusion. Therefore, the Manchego prospect provides evidence for the prospectivity of intrusions derived from high Ti basalts in the area, such as the Alcurra Dolerite. Manchego shares many genetic similarities with the Pants Lake intrusion in northern Labrador; both are situated in a magma conduit-type system and assimilated crustal sulfur. However, neither intrusion was sufficiently dynamic to allow the emplacement of chalcophile-undepleted magma pulses, which could have led to an upgrading of metals. Based on present knowledge, this very important step in the formation of economic sulfide deposits is seemingly missing at Manchego; however, exploration is at an early stage.
    Print ISSN: 0361-0128
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...