ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-09-28
    Description: Molecular genetic studies of Drosophila melanogaster have led to profound advances in understanding the regulation of development. Here we report gene expression patterns for nearly one-third of all Drosophila genes during a complete time course of development. Mutations that eliminate eye or germline tissue were used to further analyze tissue-specific gene expression programs. These studies define major characteristics of the transcriptional programs that underlie the life cycle, compare development in males and females, and show that large-scale gene expression data collected from whole animals can be used to identify genes expressed in particular tissues and organs or genes involved in specific biological and biochemical processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arbeitman, Michelle N -- Furlong, Eileen E M -- Imam, Farhad -- Johnson, Eric -- Null, Brian H -- Baker, Bruce S -- Krasnow, Mark A -- Scott, Matthew P -- Davis, Ronald W -- White, Kevin P -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2002 Sep 27;297(5590):2270-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12351791" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Animals ; Cluster Analysis ; Drosophila Proteins/genetics/physiology ; Drosophila melanogaster/embryology/*genetics/*growth & development ; Embryo, Nonmammalian/physiology ; Female ; *Gene Expression ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; *Genes, Insect ; Germ Cells/physiology ; Larva/genetics ; Life Cycle Stages/*genetics ; Male ; Oligonucleotide Array Sequence Analysis ; Organ Specificity ; Pupa/genetics ; RNA, Messenger/genetics/metabolism ; Sex Characteristics ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-08
    Description: Sex differences in gene expression have been widely studied in Drosophila melanogaster . Sex differences vary across strains, but many molecular studies focus on only a single strain, or on genes that show sexually dimorphic expression in many strains. How extensive variability is and whether this variability occurs among genes regulated by sex determination hierarchy terminal transcription factors is unknown. To address these questions, we examine differences in sexually dimorphic gene expression between two strains in Drosophila adult head tissues. We also examine gene expression in doublesex ( dsx ) mutant strains to determine which sex-differentially expressed genes are regulated by DSX, and the mode by which DSX regulates expression. We find substantial variation in sex-differential expression. The sets of genes with sexually dimorphic expression in each strain show little overlap. The prevalence of different DSX regulatory modes also varies between the two strains. Neither the patterns of DSX DNA occupancy, nor mode of DSX regulation explain why some genes show consistent sex-differential expression across strains. We find that the genes identified as regulated by DSX in this study are enriched with known sites of DSX DNA occupancy. Finally, we find that sex-differentially expressed genes and genes regulated by DSX are highly enriched on the fourth chromosome. These results provide insights into a more complete pool of potential DSX targets, as well as revealing the molecular flexibility of DSX regulation.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-08-10
    Description: Male and female reproductive behaviors in Drosophila melanogaster are vastly different, but neurons that express sex-specifically spliced fruitless transcripts ( fru P1 ) underlie these behaviors in both sexes. How this set of neurons can generate such different behaviors between the two sexes is an unresolved question. A particular challenge is that fru P1 -expressing neurons comprise only 2–5% of the adult nervous system, and so studies of adult head tissue or whole brain may not reveal crucial differences. Translating Ribosome Affinity Purification (TRAP) identifies the actively translated pool of mRNAs from fru P1 -expressing neurons, allowing a sensitive, cell-type-specific assay. We find four times more male-biased than female-biased genes in TRAP mRNAs from fru P1 -expressing neurons. This suggests a potential mechanism to generate dimorphism in behavior. The male-biased genes may direct male behaviors by establishing cell fate in a similar context of gene expression observed in females. These results suggest a possible global mechanism for how distinct behaviors can arise from a shared set of neurons.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-11-14
    Description: Long-term memory formation in Drosophila melanogaster is an important neuronal function shaping the insect’s behavioral repertoire by allowing an individual to modify behaviors on the basis of previous experiences. In conditioned courtship or courtship suppression, male flies that have been repeatedly rejected by mated females during courtship advances are less likely than naïve males to subsequently court another mated female. This long-term courtship suppression can last for several days after the initial rejection period. Although genes with known functions in many associative learning paradigms, including those that function in cyclic AMP signaling and RNA translocation, have been identified as playing critical roles in long-term conditioned courtship, it is clear that additional mechanisms also contribute. We have used RNA sequencing to identify differentially expressed genes and transcript isoforms between naïve males and males subjected to courtship-conditioning regimens that are sufficient for inducing long-term courtship suppression. Transcriptome analyses 24 hours after the training regimens revealed differentially expressed genes and transcript isoforms with predicted and known functions in nervous system development, chromatin biology, translation, cytoskeletal dynamics, and transcriptional regulation. A much larger number of differentially expressed transcript isoforms were identified, including genes previously implicated in associative memory and neuronal development, including fruitless , that may play functional roles in learning during courtship conditioning. Our results shed light on the complexity of the genetics that underlies this behavioral plasticity and reveal several new potential areas of inquiry for future studies.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-06-18
    Description: In this commentary, Michelle Arbeitman et al. , examine the topic of the Genetics of Sex as explored in this month's issues of GENETICS and G3: Genes | Genomes | Genetics . These inaugural articles are part of a joint Genetics of Sex collection (ongoing) in the GSA journals.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-01-07
    Description: The developmental transition to motherhood requires gene expression changes that alter the brain to drive the female to perform maternal behaviors. We broadly examined the global transcriptional response in the mouse maternal brain, by examining four brain regions: hypothalamus, hippocampus, neocortex, and cerebellum, in virgin females, two pregnancy time points, and three postpartum time points. We find that overall there are hundreds of differentially expressed genes, but each brain region and time point shows a unique molecular signature, with only 49 genes differentially expressed in all four regions. Interestingly, a set of "early-response genes" is repressed in all brain regions during pregnancy and postpartum stages. Several genes previously implicated in underlying postpartum depression change expression. This study serves as an atlas of gene expression changes in the maternal brain, with the results demonstrating that pregnancy, parturition, and postpartum maternal experience substantially impact diverse brain regions.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2006-07-15
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...