ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    Publication Date: 2024-03-15
    Description: Change in the nutritional quality of phytoplankton is a key mechanism through which ocean acidification can affect the function of marine ecosystems. Copepods play an important role transferring energy from phytoplankton to higher trophic levels, including fatty acids (FA)-essential macronutrients synthesized by primary producers that can limit zooplankton and fisheries production. We investigated the direct effects of pCO2 on phytoplankton and copepods in the laboratory, as well as the trophic transfer of effects of pCO2 on food quality. The marine cryptophyte Rhodomonas salina was cultured at 400, 800, and 1200 μatm pCO2 and fed to adult Acartia hudsonica acclimated to the same pCO2 levels. We examined changes in phytoplankton growth rate, cell size, carbon content, and FA content, and copepod FA content, grazing, respiration, egg production, hatching, and naupliar development. This single-factor experiment was repeated at 12°C and at 17°C. At 17°C, the FA content of R. salina responded non-linearly to elevated pCO2 with the greatest FA content at intermediate levels, which was mirrored in A. hudsonica; however, differences in ingestion rate indicate that copepods accumulated FA less efficiently at elevated pCO2. A. hudsonica nauplii developed faster at elevated pCO2 at 12°C in the absence of strong food quality effects, but not at 17°C when food quality varied among treatments. Our results demonstrate that changes to the nutritional quality of phytoplankton are not directly translated to their grazers, and that studies that include trophic links are key to unraveling how ocean acidification will drive changes in marine food webs.
    Keywords: Acartia hudsonica; Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Arthropoda; Behaviour; Bicarbonate ion; Bicarbonate ion, standard deviation; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calcite saturation state, standard deviation; Calculated using seacarb after Nisumaa et al. (2010); Calculated using seacarb after Orr et al. (2018); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbon/Nitrogen ratio; Carbon/Nitrogen ratio, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon content per individual; Carbon content per individual, standard deviation; Carbon dioxide; Carbon dioxide, standard deviation; Carbon per cell; Carbon per cell, standard deviation; Cell biovolume; Cell biovolume, standard deviation; Chromista; Cryptophyta; Egg hatching success; Egg hatching success, standard deviation; Egg production rate, standard deviation; Egg production rate per female prosome length; Fatty acid per cell; Fatty acids, total, ingested; Fatty acids accumulation efficiency; Fatty acids per cell, standard deviation; Fatty acids per individual; Fatty acids per individual, standard deviation; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Fugacity of carbon dioxide in seawater, standard deviation; Growth/Morphology; Growth rate; Growth rate, standard deviation; Laboratory experiment; Laboratory strains; Larvae; Larvae, standard deviation; Name; Nitrogen content per individual; Nitrogen content per individual, standard deviation; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Phytoplankton; Registration number of species; Replicates; Reproduction; Rhodomos Sali; Salinity; Salinity, standard deviation; Single species; Species; Species interaction; Temperature; Temperature, water; Treatment; Type; Uniform resource locator/link to reference; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 18447 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-15
    Description: Surf smelt (Hypomesus pretiosus) are ecologically critical forage fish in the North Pacific ecosystem. As obligate beach spawners, surf smelt embryos are exposed to wide-ranging marine and terrestrial environmental conditions. Despite this fact, very few studies have assessed surf smelt tolerance to climate stressors. The purpose of this study was to examine the interactive effects of climate co-stressors ocean warming and acidification on the energy demands of embryonic and larval surf smelt. Surf smelt embryos and larvae were collected from spawning beaches and placed into treatment basins under three temperature treatments (13°C, 15°C, and 18°C) and two pCO2 treatments (i.e. ocean acidification) of approximately 900 and 1900 μatm. Increased temperature significantly decreased yolk size in surf smelt embryos and larvae. Embryo yolk sacs in high temperature treatments were on average 7.3% smaller than embryo yolk sacs from ambient temperature water. Larval yolk and oil globules mirrored this trend. Larval yolk sacs in the high temperature treatment were 45.8% smaller and oil globules 31.9% smaller compared to larvae in ambient temperature. There was also a significant positive effect of acidification on embryo yolk size, indicating embryos used less maternally-provisioned energy under acidification scenarios. There was no significant effect of either temperature or acidification on embryo heartrates. These results indicate that near-future climate change scenarios may impact the energy demands of developing surf smelt, leading to potential effects on surf smelt fitness and contributing to variability in adult recruitment.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Area; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chordata; Coast and continental shelf; EXP; Experiment; Experiment duration; Fidalgo_Bay; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Heart beat rate; Hypomesus pretiosus; Identification; Laboratory experiment; Nekton; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Proportion; Replicates; Reproduction; Salinity; Salinity, standard deviation; Single species; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Temperate; Temperature; Temperature, water; Temperature, water, standard deviation; Treatment; Type; Yolk area
    Type: Dataset
    Format: text/tab-separated-values, 133368 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Miller, Cale A; Yang, Sylvia; Love, Brooke A (2017): Moderate Increase in TCO2 Enhances Photosynthesis of Seagrass Zostera japonica, but Not Zostera marina: Implications for Acidification Mitigation. Frontiers in Marine Science, 4, https://doi.org/10.3389/fmars.2017.00228
    Publication Date: 2024-03-15
    Description: Photosynthesis and respiration are vital biological processes that shape the diurnal variability of carbonate chemistry in nearshore waters, presumably ameliorating (daytime) or exacerbating (nighttime) short-term acidification events, which are expected to increase in severity with ocean acidification (OA). Biogenic habitats such as seagrass beds have the capacity to reduce CO2 concentration and potentially provide refugia from OA. Further, some seagrasses have been shown to increase their photosynthetic rate in response to enriched total CO2 (TCO2). Therefore, the ability of seagrass to mitigate OA may increase as concentrations of TCO2 increase. In this study, we exposed native Zostera marina and non-native Zostera japonica seagrasses from Padilla Bay, WA (USA) to various levels of irradiance and TCO2. Our results indicate that the average maximum net photosynthetic rate (Pmax) for Z. japonica as a function of irradiance and TCO2 was 3x greater than Z. marina when standardized to chlorophyll (360 ± 33 μmol TCO2 mg/chl/h and 113 ± 10 μmol TCO2 mg/chl/h, respectively). Additionally, Z. japonica increased its Pmax ~50% when TCO2 increased from 1,770 to 2,051 μmol TCO2/kg. In contrast, Z. marina did not display an increase in Pmax with higher TCO2, possibly due to the variance of photosynthetic rates at saturating irradiance within TCO2 treatments (coefficient of variation: 30–60%) relative to the range of TCO2 tested. Our results suggest that Z. japonica can affect the OA mitigation potential of seagrass beds, and its contribution may increase relative to Z. marina as oceanic TCO2 rises. Further, we extended our empirical results to incorporate various biomass to water volume ratios in order to conceptualize how these additional attributes affect changes in carbonate chemistry. Estimates show that the change in TCO2 via photosynthetic carbon uptake as modeled in this study can produce positive diurnal changes in pH and aragonite saturation state that are on the same order of magnitude as those estimated for whole seagrass systems. Based on our results, we predict that seagrasses Z. marina and Z. japonica both have the potential to produce short-term changes in carbonate chemistry, thus offsetting anthropogenic acidification when irradiance is saturating.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Change; Coast and continental shelf; EXP; Experiment; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Irradiance; Laboratory experiment; Light; Net photosynthesis rate, carbon dioxide, per chlorophyll a; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Padilla_Bay; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; pH change; Plantae; Primary production/Photosynthesis; Registration number of species; Salinity; Seagrass; Single species; Species; Temperate; Temperature, water; Temperature, water, standard deviation; Tracheophyta; Type; Uniform resource locator/link to reference; Zostera japonica; Zostera marina
    Type: Dataset
    Format: text/tab-separated-values, 7096 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-09
    Description: These data were collected at Shannon Point Marine Center in Washington, U.S.A. in March and May, 2021. Embryos were reared at either 10°C (ambient) or 16°C (heightened) and at either ~500 pCO2 uatm (ambient) or ~2000 pCO2 uatm (heightened). These data measure the response of winter-spawned Pacific herring embryos to critical thermal maximum excursions (CTmax) up to either 20°C or 25°C for 1, 2, or 3 hours of exposure. Percent survival was evaluated between rearing temperature and pCO2 level, maximum CTmax temperature, and duration of exposure to CTmax. The results evaluate if rearing conditions affect survival during a marine heatwave and the CTmax temperature and duration at which survival diminishes. Heart contractions assessed cardiac stress in embryos post-CTmax trials. Daily and cumulative hatching response of embryos in both March and May were measured. Hatching success (%), malformation rates in embryos (%) and malformation rates in hatched larvae (%) were measured. Oxygen consumption rates (MO2) response of winter-spawned Pacific herring embryos to variations in rearing temperature and pCO2 levels were measured.
    Keywords: Animalia; Aragonite saturation state; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cherry_Point; Chordata; Clupea pallasii; Coast and continental shelf; Date; Date/Time local; Development; Egg, mass average; Egg hatching success; Event label; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Heart beat rate; Identification; Laboratory experiment; Larvae; Mortality/Survival; Nekton; North Pacific; Number; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Oxygen; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Port_Gamble; Proportion; Proportion of survival; Replicate; Reproduction; Respiration; Salinity; Sampling date/time, experiment; Single species; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Temperate; Temperature; Temperature, water; Temperature, water, standard deviation; Time in days; Time in hours; Treatment; Type of study; Volume
    Type: Dataset
    Format: text/tab-separated-values, 117774 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q06T01, doi:10.1029/2008GC002104.
    Description: As part of a rapid response cruise in May 2006, we surveyed water column hydrothermal plumes and bottom conditions on the East Pacific Rise between 9°46.0′N and 9°57.6′N, where recent seafloor volcanic activity was suspected. Real-time measurements included temperature, light transmission, and salinity. Samples of the plume waters were analyzed for methane, manganese, helium concentrations, and the δ 13C of methane. These data allow us to examine the effects of the 2005–2006 volcanic eruption(s) on plume chemistry. Methane and manganese are sensitive tracers of hydrothermal plumes, and both were present in high concentrations. Methane reached 347 nM in upper plume samples (250 m above seafloor) and exceeded 1085 nM in a near-bottom sample. Mn reached 54 nM in the upper plume and 98 nM in near-bottom samples. The concentrations of methane and Mn were higher than measurements made after a volcanic eruption in the same area in 1991, but the ratio of CH4/Mn, at 6.7, is slightly lower, though still well above the ratios measured in chronic plumes. High concentrations of methane in near-bottom samples were associated with areas of microbial mats and diffuse venting documented in seafloor imagery. The isotopic composition of the methane carbon shows evidence of active microbial oxidation; however, neither the fractionation factor nor the source of the eruption-associated methane can be determined with any certainty. Considerable scatter in the isotopic data is due to diverse sources for the methane as well as fractionation as methane is consumed. One sample at +21‰ versus Peedee belemnite standard is among the most enriched methane carbon values reported in a hydrothermal plume to date.
    Description: This field work was supported by NSF awards OCE0222069 (J.P.C., M.D.L.); OCE0525863 (D.J.F.); and OCE0327261 (T.M..S.); and the NASA Astrobiology Institute (JPC). The NOAA-VENTS program provided additional support through a grant to the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA17RJ1232.
    Keywords: Hydrothermal ; Plume ; Methane isotopes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-05-29
    Description: As research into the biotic effects of ocean acidification has increased, the methods for simulating these environmental changes in the laboratory have multiplied. Here we describe the atmospheric carbon control simulator (ACCS) for the maintenance of plankton under controlled pCO2 conditions, designed for species sensitive to the physical disturbance introduced by the bubbling of cultures and for studies involving trophic interaction. The system consists of gas mixing and equilibration components coupled with large-volume atmospheric simulation chambers. These chambers allow gas exchange to counteract the changes in carbonate chemistry induced by the metabolic activity of the organisms. The system is relatively low cost, very flexible, and when used in conjunction with semi-continuous culture methods, it increases the density of organisms kept under realistic conditions, increases the allowable time interval between dilutions, and/or decreases the metabolically driven change in carbonate chemistry during these intervals. It accommodates a large number of culture vessels, which facilitate multi-trophic level studies and allow the tracking of variable responses within and across plankton populations to ocean acidification. It also includes components that increase the reliability of gas mixing systems using mass flow controllers.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-03-14
    Electronic ISSN: 1932-6203
    Topics: Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-02-01
    Description: Previous work at the Main Endeavour Field (MEF) has shown that chloride concentration in high-temperature vent fluids has not exceeded 510 mmol/kg (94% of seawater), which is consistent with brine condensation and loss at depth, followed by upward flow of a vapor phase toward the seafloor. Magmatic and seismic events have been shown to affect fluid temperature and composition and these effects help narrow the possibilities for sub-surface processes. However, chloride-temperature data alone are insufficient to determine details of phase separation in the upflow zone. Here we use variation in chloride and gas content in a set of fluid samples collected over several days from one sulfide chimney structure in the MEF to constrain processes of mixing and phase separation. The combination of gas (primarily magmatic CO2 and seawater-derived Ar) and chloride data, indicate that neither variation in the amount of brine lost, nor mixing of the vapor phase produced at depth with variable quantities of (i) brine or (ii) altered gas rich seawater that has not undergone phase separation, can explain the co-variation of gas and chloride content. The gas-chloride data require additional phase separation of the ascending vapor-like fluid. Mixing and gas partitioning calculations show that near-critical temperature and pressure conditions can produce the fluid compositions observed at Sully vent as a vapor-liquid conjugate pair or as vapor-liquid pair with some remixing, and that the gas partition coefficients implied agree with theoretically predicted values. © 2016. American Geophysical Union. All Rights Reserved.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...